Skip to main content
Log in

A Survey of QoS-aware Routing Protocols for the MANET-WSN Convergence Scenarios in IoT Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless Sensor Network (WSN) and Mobile Ad hoc Network (MANET) have attracted a special attention because they can serve as communication means in many areas such as healthcare, military, smart traffic and smart cities. Nowadays, as all devices can be connected to a network forming the Internet of Things (IoT), the integration of WSN, MANET and other networks into IoT is indispensable. We investigate the convergence of WSN and MANET in IoT and consider a fundamental problem, that is, how a converged (WSN-MANET) network provides quality of service (QoS) guarantees to rich multimedia applications. This is very important because the network performances of WSN and MANET are quite low, while multimedia applications always require quality of services at certain levels. In this work, we survey the QoS-guaranteed routing protocols for WSN-MANETs, that are proposed in IEEE Xplore Digital Library over the last decade. Then, basing on our findings, we suggest future open research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cisco Annual Internet Report (2018 – 2023). Updated 2020. Retrieved January 8, 2020 from: http://cisco.com

  2. Quy, V. K., Ban, N. T., Nam, V. H., Tuan, D. M., & Han, N. D. (2019). Survey of recent routing metrics and protocols for mobile ad-hoc networks. Journal of Communications, 14(2), 110–120. https://doi.org/10.12720/jcm.14.2.110-120.

    Article  Google Scholar 

  3. Payalan, Y. F., & Guvensan, M. A. (2020). Towards next-generation vehicles featuring the vehicle intelligence. IEEE Transaction on Intelligent Transportation Systems, 21(1), 30–47. https://doi.org/10.1109/TITS.2019.29.2917866.

    Article  Google Scholar 

  4. Masoudi, M. (2019). Green mobile networks for 5G and beyond. IEEE Access, 7, 107270–107299. https://doi.org/10.1109/ACCESS.2019.2932777.

    Article  Google Scholar 

  5. Elhabyan, R., Shi, W., & St-Hilaire, M. (2019). Coverage protocols for wireless sensor networks Review and future directions. Journal of Communication and Networks., 21(1), 45–60. https://doi.org/10.1109/JCN.2019.000005.

    Article  Google Scholar 

  6. Yang, P., Xiao, Y., Xiao, M., & Li, S. (2019). 6G wireless communications: vision and potential techniques. IEEE Network, 33(4), 70–75. https://doi.org/10.1109/MNET.2019.1800418.

    Article  MathSciNet  Google Scholar 

  7. Du, R., Santi, P., Xiao, M., Vasilakos, A. V., & Fischione, C. (2019). The sensable city: a survey on the deployment and management for smart city monitoring. IEEE Communications Surveys & Tutorials, 21(2), 1533–1560. https://doi.org/10.1109/COMST.2018.2881008.

    Article  Google Scholar 

  8. Bhuiyan, Z. A., Wang, G., Cao, J., & Wu, J. (2015). Deploying wireless sensor networks with fault-tolerance for structural health monitoring. IEEE Transactions on Computers, 64(2), 382–395. https://doi.org/10.1109/TC.2013.195.

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, A., Wang, L., Ye, X., & Lin, X. (2017). Light-weight and robust security-aware D2D-assist data transmission protocol for mobile-health systems. IEEE Transactions on Information Forensics and Security, 12(3), 662–675. https://doi.org/10.1109/TIFS.2016.2631950.

    Article  Google Scholar 

  10. Alsharif, N., & Shen, X. (2017). iCAR-II: Infrastructure based connectivity aware routing in vehicular networks. IEEE Transactions on Vehicular Technology, 66(5), 4231–4244. https://doi.org/10.1109/TVT.2016.2600481.

    Article  Google Scholar 

  11. Lin, D., Kang, J., Squicciarini, A., Wu, Y., Gurung, S., & Tonguz, O. (2017). MoZo: A moving zone based routing protocol using pure V2V communication in VANETs. IEEE Transactions on Mobile Computing, 16(5), 1357–1370. https://doi.org/10.1109/TMC.2016.2592915.

    Article  Google Scholar 

  12. Lee, J. S., Yoo, Y., Choi, H. S., Kim, T., & Choi, J. K. (2019). Energy-efficient TDMA scheduling for UVS tactical MANET. IEEE Communications Letters, 23(11), 2126–2129. https://doi.org/10.1109/LCOMM.2019.2962286.

    Article  Google Scholar 

  13. Lieser, P., Alvarez, F., Gardner-Stephen, P., Hollick, M., & Boehnstedt D. (2017). Architecture for responsive emergency communications networks. IEEE Global Humanitarian Technology Conference (GHTC), San Jose, CA, USA, 1–9. https://doi.org/10.1109/GHTC.2017.8239239.

  14. Ojetunde, B., Shibata, N., & Gao, J. (2017). Secure payment system utilizing MANET for disaster areas. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(12), 2651–2363.

    Article  Google Scholar 

  15. Quy, V. K., Ban, N. T., & Han, N. D. (2019). A high-performance routing protocol for multimedia applications in MANETs. Journal of Communications, 14(4), 267–274. https://doi.org/10.12720/jcm.14.4.267-274.

    Article  Google Scholar 

  16. RFC3561. Retrieved January 12, 2020, from: https://www.ietf.org

  17. RFC4728. Retrieved January 12, 2020, from: https://www.ietf.org

  18. Chen, L., & Heinzelman, W. B. (2005). QoS-aware routing based on bandwidth estimation for mobile Ad-hoc networks. IEEE Journal on Selected Areas in Communications, 2(3), 561–572. https://doi.org/10.1109/JSAC.2004.842560.

    Article  Google Scholar 

  19. Hanzo, L., & Tafazolli, R. (2011). QoS-aware routing and admission control in shadow-fading environments for multirate MANETs. IEEE Transactions on Mobile Computing, 10(5), 622–637. https://doi.org/10.1109/TMC.2010.208.

    Article  Google Scholar 

  20. Eiza, M. H., & Ni, Q. (2013). An evolving graph-based reliable routing scheme for VANETs. IEEE Transactions on Vehicular Technology, 62(4), 1493–1504. https://doi.org/10.1109/TVT.2013.2244625.

    Article  Google Scholar 

  21. Li, Z., & Shen, H. (2014). A QoS-oriented distributed routing protocol for hybrid wireless networks. IEEE Transactions on Mobile Computing, 13(3), 693–708. https://doi.org/10.1109/TMC.2012.258.

    Article  Google Scholar 

  22. Li, X., Liu, T., Liu, Y., & Tang, Y. (2014). Optimized multicast routing algorithm based on tree structure in MANETs. China Communications, 11(2), 90–99.

    Article  Google Scholar 

  23. ur Rehman, S., Khan, M. A., Imran, M., Zia, T. A., & Iftikhar, M. (2017). Enhancing quality-of-service conditions using a cross-layer paradigm for ad-hoc vehicular communication. IEEE Access, 5, 12404–12416. https://doi.org/10.1109/ACCESS.2017.2717501.

    Article  Google Scholar 

  24. Luo, Q., & Wang, J. (2017). Multiple QoS parameters based routing for civil aeronautical ad-hoc networks. IEEE Internet of Things Journal., 4(3), 804–814. https://doi.org/10.1109/JIOT.2017.2669993.

    Article  Google Scholar 

  25. Chen, Y., Wu, E. H., Lin, C., & Chen, G. (2018). Bandwidth-satisfied and coding-aware multicast protocol in MANETs. IEEE Transition on Mobile Computing, 17(8), 1778–1790. https://doi.org/10.1109/TMC.2017.2778262.

    Article  Google Scholar 

  26. Chen, Y., Hu, C., Wu, E. H., Chuang, S., & Chen, G. (2018). A delay-sensitive multicast protocol for network capacity enhancement in multirate MANETs. IEEE Systems Journal, 12(1), 926–937. https://doi.org/10.1109/JSYST.2017.2677952.

    Article  Google Scholar 

  27. Sait, K. B., Mekhilef, S., & Sabeur, N. (2018). A new routing approach for mobile ad hoc systems based on fuzzy Petri nets and ant system. IEEE Access, 6, 65705–65720. https://doi.org/10.1109/ACCESS.2018.2878145.

    Article  Google Scholar 

  28. Jabbar, W. A., Saad, W. K., & Ismail, M. (2018). MEQSA-OLSRv2: A multicriteria-based hybrid multipath protocol for energy-efficient and QoS-aware data routing in MANET-WSN convergence scenarios of IoT. IEEE Access, 6, 76546–76572. https://doi.org/10.1109/ACCESS.2018.2882853.

    Article  Google Scholar 

  29. Chintalapalli, R. M., & Ananthula, V. R. (2018). M-Lion whale: multi-objective optimisation model for secure routing in mobile ad-hoc network. IET Communications, 12(12), 1406–1415. https://doi.org/10.1049/iet-com.2017.1279.

    Article  Google Scholar 

  30. Sivaram, M., Porkodi, V., Mohammed, A. S., Manikandan, V., & Yuvaraj, N. (2019). Retransmission DBTMA protocol with fast retransmission strategy to improve the performance of MANETs. IEEE Access, 7, 85098–85109. https://doi.org/10.1109/ACCESS.2019.29.2918723.

    Article  Google Scholar 

  31. Din, S., Qureshi, K. N., Afsar, M. S., Rodrigues, J. J., Ahmad, A., & Choi, G. S. (2020). Beaconless traffic-aware geographical routing protocol for intelligent transportation system. IEEE Access, 8, 187671–187686. https://doi.org/10.1109/ACCESS.2020.3030982.

    Article  Google Scholar 

  32. Guo, X., Chen, Y., Cao, L., Zhang, D., & Jiang, Y. (2020). A receiver-forwarding decision scheme based on Bayesian for NDN-VANET. China Communications, 17(8), 106–120.

    Article  Google Scholar 

  33. Xu, C., Xiong, Z., Kong, X., Zhao, G., & Yu, S. (2019). A packet reception probability-based reliable routing protocol for 3D VANET. IEEE Wireless Communications Letters, 9(4), 495–498. https://doi.org/10.1109/LWC.2019.2960236.

    Article  Google Scholar 

  34. Mershad, K. (2020). SURFER: A secure SDN-based routing protocol for internet of vehicles. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2020.3038465.

    Article  Google Scholar 

  35. Fatemidokht, H., Rafsanjani, M. K., Gupta, B. B., & Hsu, C. H. (2021). Efficient and secure routing protocol based on artificial intelligence algorithms with UAV-assisted for vehicular Ad Hoc networks in intelligent transportation systems. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2020.3041746.

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Hung Yen University of Technology and Education for supporting this research.

Author information

Authors and Affiliations

Authors

Contributions

We have conducted the research, analysed the data, and performed simulations together. All authors have approved the final version.

Corresponding author

Correspondence to Vu Khanh Quy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quy, V.K., Nam, V.H., Linh, D.M. et al. A Survey of QoS-aware Routing Protocols for the MANET-WSN Convergence Scenarios in IoT Networks. Wireless Pers Commun 120, 49–62 (2021). https://doi.org/10.1007/s11277-021-08433-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08433-z

Keywords

Navigation