Skip to main content
Log in

A Perspective on Network Coding Based on Packet Length

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Network coding (NC) significantly increases communication opportunities and improves network performance. The focus of most research is on performance analysis with the same packet length of input flows. However, the length of packets is different in real networks and affects network coding performance. In this paper, first we proposed an asynchronous network coding strategy with periodic broadcasting at the relay node and simulated the relation between the broadcasting period and the coding gain. Second, we took the packet length into consideration and obtained the mathematical relation between the coding gain and the packet length for a given arrival rate. Finally, we verified the results via simulation. Our work showed that the impact of the packet length could not be ignored when using network coding. The methodology to improve the performance of NC in real networks is provided when the statistical length of packets is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 18(3), 1617–1655.

    Article  Google Scholar 

  2. Torres Compta, P., Fitzek, F. H., & Lucani, D. E. (2015). Network coding is the 5G key enabling technology: Effects and strategies to manage heterogeneous packet lengths. Transactions on Emerging Telecommunications Technologies, 26(1), 46–55.

    Article  Google Scholar 

  3. Yin, C., Dong, P., Du, X., Zheng, T., Zhang, H., & Guizani, M. (2020). An adaptive network coding scheme for multipath transmission in cellular-based vehicular networks. Sensors, 20(20), 5902.

    Article  Google Scholar 

  4. Wang, L., Liu, Y., Xu, J., Yin, J., Xu, L., & Yang, Y. (2020). Network coding for reliable video distribution in multi-hop device-to-device communications. EURASIP Journal on Wireless Communications and Networking, 2020(1), 1–21.

    Article  Google Scholar 

  5. Katti, S., Rahul, H., Hu, W., Katabi, D., Médard, M., & Crowcroft, J. (2008). Xors in the air: Practical wireless network coding. IEEE/ACM Transactions on Networking (ToN), 16(3), 497–510.

    Article  Google Scholar 

  6. Médard, M., & Sprintson, A. (2011). Network coding: Fundamentals and applications. Cambridge: Academic Press.

    Google Scholar 

  7. Gruska, D. P. (2006). Network information flow. Fundamenta Informaticae, 72(1–3), 167–180.

    MathSciNet  MATH  Google Scholar 

  8. Liu, C. H., & Xue, F. (2008). Network coding for two-way relaying: Rate region, sum rate and opportunistic scheduling. In 2008 IEEE international conference on communications (pp. 1044–1049). IEEE.

  9. Moradian, M., Ashtiani, F., & Khonsari, A. (2020). Stability region and delay analysis of a SWIPT-based two-way relay network with opportunistic network coding. IEEE Transactions on Vehicular Technology, 69, 15682–15693.

    Article  Google Scholar 

  10. Ma, Y., Li, W., Fan, P., Letaief, K. B., & Liu, X. (2009). On the characteristics of queueing and scheduling at encoding nodes for network coding. International Journal of Communication Systems, 22(6), 755–772.

    Article  Google Scholar 

  11. Yuan, Y., Wu, K., Jia, W., & Peng, Y. (2012). On the queueing behavior of inter-flow asynchronous network coding. Computer Communications, 35(13), 1535–1548.

    Article  Google Scholar 

  12. Alsebae, A., Leeson, M., & Green, R. (2014). Performance of a network coding queuing model with deterministic service. In 9th international symposium on communication systems, networks & digital sign (CSNDSP) (pp. 988–993). IEEE.

  13. Wang, L., Li, Y., Pan, B., Wu, Q., Yin, J., & Xu, L. (2020). Network coding for efficient video multicast in device-to-device communications. Sensors, 20(8), 2254.

    Article  Google Scholar 

  14. Mirrezaei, S. M., Dosaranian-Moghadam, M., & Yazdanpanahei, M. (2014). Effect of network coding and multi-packet reception on point-to-multi-point broadcast networks. Wireless Personal Communications, 79(3), 1859–1891.

    Article  Google Scholar 

  15. Chi, K., Zhu, Yh., Jiang, X., & Tian, X. (2014). Practical throughput analysis for two-hop wireless network coding. Computer Networks, 60, 101–114.

    Article  Google Scholar 

  16. Dong, W., Chen, C., Liu, X., He, Y., Liu, Y., Bu, J., & Xu, X. (2014). Dynamic packet length control in wireless sensor networks. IEEE Transactions on Wireless Communications, 13(3), 1172–1181.

    Article  Google Scholar 

  17. Taghouti, M., Lucani, D. E., Pedersen, M. V., & Bouallegue, A. (2016). Random linear network coding for streams with unequally sized packets: Overhead reduction without zero-padded schemes. In 2016 23rd international conference on telecommunications (ICT) (pp. 1–6). IEEE.

  18. Dong, W., Yu, J., & Zhang, P. (2014). Exploiting error estimating codes for packet length adaptation in low-power wireless networks. IEEE Transactions on Mobile Computing, 14(8), 1601–1614.

    Article  Google Scholar 

  19. Huang, K., Liu, W., Li, Y., Savkin, A., & Vucetic, B. (2020). Wireless feedback control with variable packet length for industrial IoT. IEEE Wireless Communications Letters, 9(9), 1586–1590.

    Article  Google Scholar 

  20. Hansen, J., Lucani, D. E., Krigslund, J., Médard, M., & Fitzek, F. H. (2015). Network coded software defined networking: Enabling 5G transmission and storage networks. IEEE Communications Magazine, 53(9), 100–107.

    Article  Google Scholar 

  21. Do-Duy, T., & Vázquez-Castro, M. Á. (2020). Finite-length performance comparison of network codes using random vs pascal matrices. AEU-International Journal of Electronics and Communications, 114(153), 012.

    Google Scholar 

  22. Dosaranian-Moghadam, M., Mirrezaei, S. M., & Yazdanpanahei, M. (2019). New evolution in two-way relay networks based on physical layer network coding. Telecommunication Systems, 71(2), 181–190.

    Article  Google Scholar 

  23. Ata, S. O., & Altunbas, I. (2016). Fixed-gain AF PLNC over cascaded Nakagami-m fading channels for vehicular communications. AEU-International Journal of Electronics and Communications, 70(4), 510–516.

    Article  Google Scholar 

  24. CAIDA. Packet size distribution comparison between internet links 2008. Retrieved from, https://www.caida.org/research/traffic-analysis/pkt_size_distribution/graphs.xml.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Masoud Mirrezaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirrezaei, S.M. A Perspective on Network Coding Based on Packet Length. Wireless Pers Commun 120, 481–497 (2021). https://doi.org/10.1007/s11277-021-08469-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08469-1

Keywords

Navigation