Skip to main content

Advertisement

Log in

Design and Optimization of Microstrip patch Antenna via Improved Metaheuristic Algorithm

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Nowadays, Microstrip patch antennas (MPA) are commonly deployed in various applications as it has number of benefits like compatibility, lower volume, low weight, low cost and easiness to install on rigid surfaces. However, MPA is restricted with narrow bandwidth and therefore, the enhancement of bandwidth is essential for the broad banded appliances. This work intends to develop a new approach, which derives a non-linear objective model to assist in designing the solution spaces of antenna constraints. For this, a new improved optimization concept termed as Elephant Herding Optimization with New Scaling Factor (EHO-NSF) is proposed that tunes the MPA parameters. The significance of the proposed work is to increase the antenna gain by optimally selecting the width, patch length, dielectric value of substrate, and substrate thickness of MPA. Eventually, analysis is carried out that validates the adopted model regarding gain, cost and efficiency analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

Abbreviations

AA:

Artificial Bee Colony-Based Antenna Design

CI:

Characteristic Impedance

EMF:

Electromagnetic Field

EHAD:

Elephant Herding Based Antenna Design

EHF:

Extremely High Frequency

ERI:

Effective Refractive Index

FR4:

Fire Resistant 4

FEM:

Finite Element Method

FAD:

Firefly-based AD

FAR:

Field Asymmetry Ratio

GAD:

Genetic-based AD

GWAD:

Grey Wolf based AD

LAD:

Lion Based AD

MIS:

Modified-I-Shaped

MPA:

Microstrip Patch Antenna

MTM:

Metamaterials

MP-LAD:

MP-LA-based AD

NPS:

Non-Point-Symmetric

PS:

Point-Symmetric

PSAD:

Particle Swarm -Based AD

PGWAD:

Proposed GWAD

RMPA:

Rectangular Microstrip Patch Antenna

WOAD:

Antenna Design Without Optimization

References

  1. Jain, S., Mishra, P. K., & Mishra, P. K. (2020). Design and analysis of moisture content of hevea latex rubber using microstrip patch antenna with DGS. Materials Today: Proceedings Part 2, 29, 556–560

    Google Scholar 

  2. Koziel, S., Ogurtsov, S., Zieniutycz, W., & Sorokosz, L. (2014). Expedited design of microstrip antenna subarrays using surrogate-based optimization. IEEE Antennas and Wireless Propagation Letters, 13, 635–638

    Article  Google Scholar 

  3. Kushwaha, R. K., Karuppanan, P., & Malviya, L. D. (2018). Design and analysis of novel microstrip patch antenna on photonic crystal in THz. Physica B: Condensed Matter, 545, 107–112

    Article  Google Scholar 

  4. Khandelwal, M. K., Kanaujia, B. K., Dwari, S., Kumar, S., & Gautam, A. K. (2014). Analysis and design of wide band Microstrip-line-fed antenna with defected ground structure for Ku band applications. AEU-International Journal of Electronics and Communications, 68(10), 951–957

    Article  Google Scholar 

  5. Sharma, N., & Sharma, V. (2018). A design of Microstrip Patch Antenna using hybrid fractal slot for wideband applications. Ain Shams Engineering Journal, 9(4), 2491–2497

    Article  Google Scholar 

  6. Prema, N., & Kumar, A. (2016). Design of multiband microstrip patch antenna for C and X band. Optik, 127(20), 8812–8818

    Article  Google Scholar 

  7. Mathur, D., Bhatnagar, S. K., & Sahula, V. (2014). Quick estimation of rectangular patch antenna dimensions based on equivalent design concept. IEEE Antennas and Wireless Propagation Letters, 13, 1469–1472

    Article  Google Scholar 

  8. Nejati, A., Sadeghzadeh, R. A., & Geran, F. (2014). Effect of photonic crystal and frequency selective surface implementation on gain enhancement in the microstrip patch antenna at terahertz frequency. Physica B: Condensed Matter, 449, 113–120

    Article  Google Scholar 

  9. Yang, X., Geyi, W., & Sun, H. (2017). Optimum design of wireless power transmission system using microstrip patch antenna arrays. IEEE Antennas and Wireless Propagation Letters, 16, 1824–1827

    Google Scholar 

  10. Bhongale, S. R., Ingavale, H. R., Shinde, T. J., & Vasambekar, P. N. (2018). Microwave sintered Mg-Cd ferrite substrates for microstrip patch antennas in X-band. AEU-International Journal of Electronics and Communications, 96, 246–251

    Article  Google Scholar 

  11. Singh, A., Mehra, R. M., & Pandey, V. K. (2020). Design and Optimization of Microstrip Patch Antenna for UWB Applications Using Moth–Flame Optimization Algorithm. Wireless Personal Communications, 1-18

  12. Saxena, N. K., Kumar, N., & Pourush, P. K. S. (2015). Radiation characteristics of microstrip rectangular patch antenna fabricated on LiTiMg ferrite substrate. AEU-International Journal of Electronics and Communications, 69(12), 1741–1744

    Article  Google Scholar 

  13. Gupta, M. (2018). Vinita Mathur “Koch boundary on the square patch microstrip antenna for ultra wideband applications.” Alexandria Engineering Journal, 57(3), 2113–2122

    Article  Google Scholar 

  14. Emadeddin, A., Shad, S., Rahimian, Z., & Hassani, H. R. (2017). High mutual coupling reduction between microstrip patch antennas using novel structure. AEU-International Journal of Electronics and Communications, 71, 152–156

    Article  Google Scholar 

  15. Nuangpirom, P., Klinbumrung, K., Tangthong, N., & Akatimagool, S. (2016). Wave iterative computation for fractal microstrip patch antenna. Procedia Computer Science, 86, 39–42

    Article  Google Scholar 

  16. Anantha, B., Merugu, L., & Rao, P. S. (2017). A novel single feed frequency and polarization reconfigurable microstrip patch antenna. AEU-International Journal of Electronics and communications, 72, 8–16

    Article  Google Scholar 

  17. Naderi, M., & Zarrabi, F. B. (2018). Fereshteh Sadat Jafari, Speideh Ebrahimi, “Fractal EBG structure for shielding and reducing the mutual coupling in microstrip patch antenna array.” AEU-International Journal of Electronics and Communications, 93, 261–267

    Article  Google Scholar 

  18. Bharathi, A., Lakshminarayana, M., & Rao, P. S. (2017). A quad-polarization and frequency reconfigurable square ring slot loaded microstrip patch antenna for WLAN applications. AEU-International Journal of Electronics and Communications, 78, 15–23

    Article  Google Scholar 

  19. Poornima, S., Dutta, K., & Chandramma, S. (2020). Flexible and miniaturized design of microstrip patch antenna with improved cross-polarized radiation. AEU-International Journal of Electronics and Communications, 116, 153083

    Article  Google Scholar 

  20. Li, T. Q., Ma, B., & Lv, W. R. (2018). A novel design of microstrip patch antenna array with modified-I-shaped electromagnetic metamaterials applied in microwave wireless power transmission. Optik, 173, 193–205

    Article  Google Scholar 

  21. Chandrashekar, K. S., Dutta, K., Gajera, H., Poornima, S., & Chandramma, S. (2020). An analytical approach of designing compact microstrip patch antenna using metal-ring superstrate for wideband and broadside radiations. AEU-International Journal of Electronics and Communications, 127, 153437

    Article  Google Scholar 

  22. Rashmitha, R., Niran, N., Jugale, A. A., & Ahmed, M. R. (2020). Microstrip patch antenna design for fixed mobile and satellite 5G communications. Procedia Computer Science, 171, 2073–2079

    Article  Google Scholar 

  23. Hocini, A., Temmar, M. N., Khedrouche, D., & Zamani, M. (2019). Novel approach for the design and analysis of a terahertz microstrip patch antenna based on photonic crystals. Photonics and Nanostructures-Fundamentals and Applications, 36: 100723

  24. Samanta, S., Reddy, P. S., & Mandal, K. (2021). Field Asymmetry Ratio: A new quantitative parameter to select microstrip antenna geometries for low cross-polarization application. AEU-International Journal of Electronics and Communications, 128, 153519

    Article  Google Scholar 

  25. Shalini, M., & Madhan, M. G. (2019). Design and analysis of a dual-polarized graphene based microstrip patch antenna for terahertz applications. Optik, 194, 163050

    Article  Google Scholar 

  26. Davoudabadifarahani, H., & Ghalamkari, B. (2019). High efficiency miniaturized microstrip patch antenna for wideband terahertz communications applications. Optik, 194, 163118

    Article  Google Scholar 

  27. Guttula, R., & Nandanavanam, V. R. (2020). Mutation probability-based lion algorithm for design and optimization of microstrip patch antenna. Evolutionary Intelligence, 13, 331–344. https://doi.org/10.1007/s12065-019-00292-9

    Article  Google Scholar 

  28. Elhosseini, M. A., El Sehiemy, R. A., Rashwan, Y. I., & Gao, X. Z. (2019). On the performance improvement of elephant herding optimization algorithm. Knowledge-Based Systems, 166, 58–70

    Article  Google Scholar 

  29. Rajakumar, B. R. (2013). Impact of static and adaptive mutation techniques on genetic algorithm. International Journal of Hybrid Intelligent Systems, 10(1), 11–22. https://doi.org/10.3233/HIS-120161

    Article  Google Scholar 

  30. Rajakumar, B. R. (2013). Static and adaptive mutation techniques for genetic algorithm: A systematic comparative analysis. International Journal of Computational Science and Engineering, 8(2), 180–193. https://doi.org/10.1504/IJCSE.2013.053087

    Article  MathSciNet  Google Scholar 

  31. Swamy, S. M., Rajakumar, B. R. and Valarmathi, I. R. (2013) “Design of hybrid wind and photovoltaic power system using opposition-based genetic algorithm with cauchy mutation”. IET Chennai Fourth International Conference on Sustainable Energy and Intelligent Systems (SEISCON 2013), Chennai, India https://doi.org/10.1049/ic.2013.0361.

  32. George, A. and Rajakumar, B. R. (2013) "APOGA: An adaptive population pool size based genetic algorithm". AASRI Procedia-2013 AASRI Conference on Intelligent Systems and Control (ISC 2013), Vol. 4, (pp. 288–296) https://doi.org/10.1016/j.aasri.2013.10.043.

  33. Rajakumar, B. R. and George, A. (2012) "A new adaptive mutation technique for genetic algorithm", In proceedings of IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), (pp. 1–7), 18–20, Coimbatore, India https://doi.org/10.1109/ICCIC.2012.6510293.

  34. Shelke, P. M., & Prasad, R. S. (2020). (2020), “Improved sine-cosine algorithm for anti forensics JPEG compression.” Multimedia Research, 3(1), 33–44

    Google Scholar 

  35. Jagtap, A. M., & Gomathi, N. (2019). Improved salp swarm algorithm for network connectivity in mobile sensor network". Journal of Networking and Communication Systems, 2(3), 11–19

    Google Scholar 

  36. Poluru, R. K., & Kumar, R. L. (2019). Enhancement of ATC by optimizing TCSC configuration using adaptive moth flame optimization algorithm. Journal of Computational Mechanics, Power System and Control, 2(3), 1–9

    Article  Google Scholar 

  37. Kıran, M. S., & Fındık, O. (2015). A directed artificial bee colony algorithm. Applied Soft Computing, 26, 454–462

    Article  Google Scholar 

  38. Sivia, J. S., Pharwaha, A. P. S., & Kamal, T. S. (2016). Neurocomputational models for parameter estimation of circular microstrip patch antennas. Procedia Computer Science, 85, 393–400

    Article  Google Scholar 

  39. Fister, I., Fister, I., Yang, X.-S., & Brest, J. (2013). A comprehensive review of firefly algorithms. Swarm and Evolutionary Computation, 13, 34–46

    Article  Google Scholar 

  40. Boothalingam, R. (2018). Optimization using lion algorithm: a biological inspiration from lion’s social behavior. Evolutionary Intelligence, 11(1), 31–52

    Article  Google Scholar 

  41. McCall, J. (2005). Genetic algorithms for modelling and optimisation. Journal of Computational and APPLIED Mathematics, 184(1), 205–222

    Article  MathSciNet  Google Scholar 

  42. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61

    Article  Google Scholar 

  43. Guttula, R., & Nandanavanam, V. R. (2020). Patch antenna design optimization using opposition based grey wolf optimizer and map-reduce framework. Data Technologies and Applications, 54(1), 103–120. https://doi.org/10.1108/DTA-06-2019-0084

    Article  Google Scholar 

  44. Zhang, J., & Xia, P. (2017). An improved PSO algorithm for parameter identification of nonlinear dynamic hysteretic models. Journal of Sound and Vibration, 389, 153–167

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Ramakrishna Guttula conceived the presented idea and designed the analysis. Also, he carried out the experiment and wrote the manuscript with support from Venkateswara Rao Nandanavanam and Vella Satyanarayana. All authors discussed the results and contributed to the final manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ramakrishna Guttula.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guttula, R., Nandanavanam, V.R. & Satyanarayana, V. Design and Optimization of Microstrip patch Antenna via Improved Metaheuristic Algorithm. Wireless Pers Commun 120, 1721–1739 (2021). https://doi.org/10.1007/s11277-021-08531-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08531-y

Keywords

Navigation