Skip to main content
Log in

Digital TV Signal Based Airborne Passive Radar Clutter Suppression via a Parameter-Searched Algorithm

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Caused by the platform movement, slowly moving targets on the ground will be hidden by the stationary clutter in the Doppler domain for an airborne passive radar system. In this paper, the signal model of airborne passive radar used for ground moving target indication purpose is established at first. Then, the space–time adaptive processing technique is adopted to suppress the strong clutter. Because of the poorer range resolution than active radar, independently and identically distributed training range cells are more difficult to obtain for passive radar. To address this problem, the sparsity of clutter in the space–time domain is exploited and a jointly sparse matrix recovery model is introduced. Furthermore, a parameter-searched two-dimensional multiple measurement vectors based orthogonal matching pursuit (MOMP) algorithm is proposed to solve the off-grid (basis mismatch) problem and reduce the computational complexity at the same time, and thus to more accurately and effectively estimate the clutter covariance matrix. Simulation results with digital TV signal as the illuminator source are shown to demonstrate the effectiveness of the proposed algorithm to determine the Doppler frequency, spatial frequency, and relative bistatic range of the moving targets on the ground.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Availability of data and materials

The simulation data of program used to support the findings of this study are available from the corresponding author upon request.

Code availability

The codes are available from the corresponding author upon request.

References

  1. Kuschel, H., Cristallini, D., & Olsen, K. E. (2019). Tutorial: Passive radar tutorial. IEEE Aerospace and Electronic Systems Magazine, 34(2), 2–19.

    Article  Google Scholar 

  2. Griffiths, H. D., & Baker, C. J. (2017). An introduction to passive radar. Norwood, MA: Artech House.

    Google Scholar 

  3. Feng, W., Friedt, J.-M., Cherniak, G., & Sato, M. (2019). Batch compressive sensing for passive radar range Doppler map generation. IEEE Transactions on Aerospace and Electronic Systems, 55(6), 3090–3102.

    Article  Google Scholar 

  4. Martorella, M., & Giusti, E. (2014). Theoretical foundation of passive bistatic ISAR imaging. IEEE Transactions on Aerospace and Electronic Systems, 50(3), 1647–1659.

    Article  Google Scholar 

  5. Feng, W., Friedt, J.-M., Cherniak, G., & Sato, M. (2019). Passive radar imaging by filling gaps between ISDB digital TV channels. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7), 2055–2068.

    Article  Google Scholar 

  6. Norouzi, Y., & Derakhshani, M. (2009). Joint time difference of arrival/angle of arrival position finding in passive radar. IET Radar, Sonar & Navigation, 3(2), 167–176.

    Article  Google Scholar 

  7. Wojaczek, P., Colone, F., Cristallini, D., & Lombardo, P. (2019). Reciprocal filter-based STAP for passive radar on moving platforms. IEEE Transactions on Aerospace and Electronic Systems, 55(2), 967–988.

    Article  Google Scholar 

  8. Tan, D. K. P., Lesturgie, M., Sun, H., & Lu, Y. (2014). Space-time interference analysis and suppression for airborne passive radar using transmissions of opportunity. IET Radar, Sonar & Navigation, 8(2), 142–152.

    Article  Google Scholar 

  9. Yang, P., Lyu, X., Chai, Z., Zhang, D., Yue, Q., & Yang, J. (2017). Clutter cancellation along the clutter ridge for airborne passive radar. IEEE Geoscience and Remote Sensing Letters, 14(6), 951–955.

    Article  Google Scholar 

  10. Dawidowicz, B., Samczynski, P., Malanowski, M., Misiurewicz, J., & Kulpa, K. S. (2012). Detection of moving targets with multichannel airborne passive radar. IEEE Aerospace and Electronic Systems Magazine, 27(11), 42–49.

    Article  Google Scholar 

  11. Gromek, D., Kulpa, K., & Samczyński, P. (2016). Experimental results of passive SAR imaging using DVB-T illuminators of opportunity. IEEE Geoscience and Remote Sensing Letters, 13(8), 1124–1128.

    Article  Google Scholar 

  12. Walterscheid, I., Wojaczek, P., Cristallini, D., & Summers, A. (2018). Challenges and first results of an airborne passive SAR experiment using a DVB-T transmitter. In 12th European conference on synthetic aperture radar (pp. 1–4).

  13. Garry, J. L., Baker, C. J., & Smith, G. E. (2017). Evaluation of direct signal suppression for passive radar. IEEE Transactions on Geoscience and Remote Sensing, 55(7), 3786–3799.

    Article  Google Scholar 

  14. Colone, F., O’hagan, D. W., & Lombardo, P. (2009). A multistage processing algorithm for disturbance removal and target detection in passive bistatic radar. IEEE Transactions on Aerospace and Electronic Systems, 45(2), 698–722.

    Article  Google Scholar 

  15. Dawidowicz, B., Kulpa, K. S., Malanowski, M., Misiurewicz, J., Samczynski, P., & Smolarczyk, M. (2012). DPCA detection of moving targets in airborne passive radar. IEEE Transactions on Aerospace and Electronic Systems, 48(2), 1347–1357.

    Article  Google Scholar 

  16. Next, X., Raout, J., Kubica, M., Kubica, V., Roques, S., & Acheroy, M. (2006). Feasibility of STAP for passive GSM-based radar. In IEEE conference on radar.

  17. Guerci, J. R. (2014). Space-time adaptive processing. Norwood, MA: Artech House.

    Google Scholar 

  18. Wu, Q., Zhang, Y. D., Amin, M. G., & Himed, B. (2016). Space-time adaptive processing and motion parameter estimation in multistatic passive radar using sparse Bayesian learning. IEEE Transactions on Geoscience and Remote Sensing, 54(2), 944–957.

    Article  Google Scholar 

  19. Zhang, W., He, Z., & Li, J. (2013). A method for finding best channels in beamspace post-Doppler reduced-dimension STAP. IEEE Transactions on Aerospace and Electronic Systems, 50(1), 254–264.

    Article  Google Scholar 

  20. de Lamare, R. C., Wang, L., & Fa, R. (2010). Adaptive reduced-rank LCMV beamforming algorithms based on joint iterative optimization of filters: design and analysis. Signal Processing, 90, 640–652.

    Article  MATH  Google Scholar 

  21. Guo, Y., Liao, G., & Feng, W. (2017). Sparse representation based algorithm for airborne radar in beam-space post-Doppler reduced-dimension space-time adaptive processing. IEEE Access, 5, 5896–5903.

    Article  Google Scholar 

  22. Donoho, D. L., Elad, M., & Temlyakov, V. N. (2006). Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Transactions on Information Theory, 52(1), 6–18.

    Article  MathSciNet  MATH  Google Scholar 

  23. Candès, E. J., & Wakin, M. B. (2008). An introduction to compressive sampling. IEEE Signal Processing Magazine, 25(2), 21–30.

    Article  Google Scholar 

  24. Feng, W., Yi, L., & Sato, M. (2018). Near range radar imaging based on block sparsity and cross-correlation fusion algorithm. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensor, 11(6), 2079–2089.

    Article  Google Scholar 

  25. He, X., Tong, N., & Hu, X. (2017). High-resolution imaging and three-dimensional reconstruction of precession targets by exploiting sparse apertures. IEEE Transactions on Aerospace and Electronic Systems, 53(3), 1212–1220.

    Article  Google Scholar 

  26. Xu, X., Wei, X., & Ye, Z. (2012). DOA estimation based on sparse signal recovery utilizing weighted L1-norm penalty. IEEE Signal Processing Letters, 19(3), 155–158.

    Article  Google Scholar 

  27. Hadi, M. A., Tabassum, M. N., & Alshebeili, S. (2017). Compressed sensing based high-resolution passive bistatic radar. Signal, Image and Video Processing, 11(4), 635–642.

    Article  Google Scholar 

  28. Han, S., Fan, C., & Huang, X. (2017). A novel STAP based on spectrum-aided reduced-dimension clutter sparse recovery. IEEE Geoscience and Remote Sensing Letters, 14(2), 213–217.

    Article  Google Scholar 

  29. Feng, W., Guo, Y., Zhang, Y., & Gong, J. (2018). Airborne radar space time adaptive processing based on atomic norm minimization. Signal Processing, 148, 31–40.

    Article  Google Scholar 

  30. Yang, Z., Li, X., Wang, H., & Nie, L. (2014). Sparsity-based space-time adaptive processing using complex-valued homotopy technique for airborne radar. IET Signal Processing, 8(5), 552–564.

    Article  Google Scholar 

  31. Candès, E., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489–509.

    Article  MathSciNet  MATH  Google Scholar 

  32. Babacan, S. D., Molina, R., & Katsaggelos, A. K. (2010). Bayesian compressive sensing using Laplace priors. IEEE Transactions on Image Processing, 19(1), 53–63.

    Article  MathSciNet  MATH  Google Scholar 

  33. Tropp, J., & Gilbert, A. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(12), 4655–4666.

    Article  MathSciNet  MATH  Google Scholar 

  34. Dai, W., & Milenkovic, O. (2009). Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory, 55(5), 2230–2249.

    Article  MathSciNet  MATH  Google Scholar 

  35. Duan, K., Wang, Z., & Xie, W. (2017). Sparsity-based STAP algorithm with multiple measurement vectors via sparse Bayesian learning strategy for airborne radar. IET Signal Processing, 11(5), 544–553.

    Article  Google Scholar 

  36. Feng, W., Guo, Y., He, X., Liu, H., & Gong, J. (2018). Jointly iterative adaptive approach based space time adaptive processing using MIMO radar. IEEE Access, 6, 26605–26616.

    Article  Google Scholar 

  37. Tropp, J. A., Gilbert, A. C., & Strauss, M. J. (2006). Algorithms for simultaneous sparse approximation. Part 1: Greedy pursuit. Signal Processing, 86(3), 572–588.

    Article  MATH  Google Scholar 

  38. Chi, Y., Scharf, L., Pezeshki, A., & Calderbank, R. (2011). Sensitivity of basis mismatch to compressed sensing. IEEE Transactions on Signal Processing, 59(5), 2182–2195.

    Article  MathSciNet  MATH  Google Scholar 

  39. Herman, M., & Strohmer, T. (2010). General deviants: An analysis of perturbations in compressed sensing. IEEE J. Sel. Topics Signal Process., 4(2), 342–349.

    Article  Google Scholar 

  40. Teke, O., Gurbuz, A. C., & Arikan, O. (2013). Perturbed orthogonal matching pursuit. IEEE Transactions on Signal Processing, 61(24), 6220–6231.

    Article  MathSciNet  MATH  Google Scholar 

  41. Fannjiang, A., & Tseng, H. C. (2013). Compressive radar with off-grid targets: A perturbation approach. Inverse Problems, 29(5), 054008.

    Article  MATH  Google Scholar 

  42. Bai, G., Tao, R., Zhao, J., & Bai, X. (2017). Parameter-searched OMP method for eliminating basis mismatch in space-time spectrum estimation. Signal Processing, 138, 11–15.

    Article  Google Scholar 

  43. Glende, M. (2006). PCL signal processing for sidelobe reduction in case of periodical illuminator signals. In Proceedings international radar symposium (pp. 1–4).

  44. Searle, S., Palmer, J., Davis, L., O’Hagan, D., & Ummenhofer, M. (2014). Evaluation of the ambiguity function for passive radar with OFDM transmissions. In Proceedings of IEEE radar conference (RadarConf) (pp. 1040–1045).

  45. Brennan, L. E., & Reed, L. S. (1973). Theory of adaptive radar. IEEE Transactions on Aerospace and Electronic Systems, 9(2), 237–252.

    Article  Google Scholar 

  46. Reed, I. S., Mallett, J. D., & Brennan, L. E. (1974). Rapid convergence rate in adaptive arrays. IEEE Transactions on Aerospace and Electronic Systems, 10(6), 853–863.

    Article  Google Scholar 

  47. Ghaffari, A., Babaie-Zadeh, M., & Jutter, C. (2009). Sparse decomposition of two-dimensional signals. In Proceedings of IEEE ICASSP (pp. 3157–3160).

  48. He, X., Tong, N., & Hu, X. (2016). Two-dimension gradient projection method for sparse matrix reconstruction. Electronics Letters, 52(17), 1493–1495.

    Article  Google Scholar 

  49. Jahromi, M. J., & Kahaei, M. H. (2014). Two-dimensional iterative adaptive approach for sparse matrix solution. Electronics Letters, 50(1), 45–47.

    Article  Google Scholar 

  50. Kelley, C. T. (1999). Iterative methods for optimization: Chapter 5 (pp. 87–99). Philadelphia: Society for Industrial and Applied Mathematics.

    Book  Google Scholar 

  51. Searle,S., Howard, S., & Palmer, J. (2010). Remodulation of DVB-T signals for use in passive bistatic radar. In Conference record of the forty fourth Asilomar conference on signals, systems and computers.

  52. Wang, H., & Cai, L. (1994). On adaptive spatial-temporal processing for airborne surveillance radar systems. IEEE Transactions on Aerospace and Electronic Systems, 30(3), 660–670.

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China under Grants 62001507 and 61901511, in part by the Natural Science Basic Research Plan in Shaanxi Province of China under Grant 2020JQ-478, and in part by the Aeronautical Science Foundation of China under Grant No. 20200001096001.

Author information

Authors and Affiliations

Authors

Contributions

DQ proposed the method, did the simulations, and wrote the manuscript; BF, ZZ, and XH provided suggestions for signal processing and reviewed the manuscript; WF and CS guided the research, gave some suggestions, and reviewed the manuscript.

Corresponding author

Correspondence to Boyu Feng.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, D., Feng, B., Feng, W. et al. Digital TV Signal Based Airborne Passive Radar Clutter Suppression via a Parameter-Searched Algorithm. Wireless Pers Commun 120, 3189–3216 (2021). https://doi.org/10.1007/s11277-021-08607-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08607-9

Keywords

Navigation