Skip to main content
Log in

Development of a High Sensitive Refractive Index Sensor Based on Evanescent Wave Absorbance effect in Reflective Mode for Ocean Observation

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper demonstrates the Refractive Index (RI) sensing characteristics of the proposed evanescent wave absorbance (EWA) sensor in reflective mode. The end reflective-EWA (ER-EWA) sensor is fabricated using Tollens’ reagent for depositing silver (Ag) layer throughout the length of sensing region and to fabricate in-line reflective mirror at the end of sensing probe. The fabricated ER-EWA sensor measures changes in RI of seawater sample with a sensitivity of 48.036 arbitrary unit per RI unit (a.u./RIU) in the range of 1.332 RIU to 1.344 RIU. The proposed sensor is further analyzed for its sensitivity towards changes in salinity at constant turbidity and variation in turbidity at constant salinity values. By validating the functionality of the proposed ER-EWA sensor against commercial sensors, accuracies for salinity and turbidity measurements are obtained as 98.1791% and 93.5737%, respectively. This proves the potential of the proposed ER-EWA sensor in real time monitoring of ocean parameters such as salinity and turbidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

Abbreviations

a.u.:

Arbitrary unit

BBLS:

Broad-band light source

CTD:

Conductivity-temperature-depth

ER-EWA:

End reflective-evanescent wave absorbance

EWA:

Evanescent wave absorbance

FBG:

Fiber Bragg grating

FNU:

Formazin Nephelometric unit

HF:

HydroFluoric acid

PSU:

Practical salinity unit

RI:

Refractive Index

RIU:

Refractive Index unit

SEM:

Scanning electron microscope

SLM:

Skip length model

SMF:

Single mode fiber

SPR:

Surface plasmon resonance

TR:

Tollens’ reagent

αm :

Bulk absorption coefficient of medium

Ag:

Silver

AgNO3 :

Silver nitrate

C6H12O6 :

Glucose

C:

Concentration of aquatic medium

dc :

Core diameter

dBm:

Decibel per milliwatt

Δ:

Displacement

Γ:

Evanescent wave absorption coefficient

KOH:

Potassium Hydroxide

λi :

Wavelength of incident light

La :

Absorption length

LA :

Overall absorption length

Li :

Interaction length

Ls :

Skip length

M:

Molarity

mS:

MilliSiemens

NaOH:

Sodium hydroxide

nc :

Refractive index of fiber core

nm :

Refractive index of aquatic medium

Nm:

Nanometer

P(0):

Power transmitted through optical fiber in the absence of medium under analysis

rc :

Fraction of total guided power confined within sensing region

SnCl2 :

Stannous chloride

Μm:

Micrometer

θi :

Angle of incidence at the interface of fiber core and medium under analysis

θl :

Launching angle of optical signal inside fiber core

θr :

Angle of reflection from the interface of fiber core and medium under analysis

References

  1. Hou, B. (2012). An optical solution for simultaneous in-situ sea water salinity and turbidity measurements (Doctoral dissertation).

  2. Duarte, D. P., Nogueira, R. N., & Bilro, L. (2020). Turbidity and RI dependency of a polymer optical fiber-based chromatic sensor. Sensors, 20(1), 19.

    Article  Google Scholar 

  3. Chen, J., Guo, W., Xia, M., Li, W., & Yang, K. (2018). In situ measurement of seawater salinity with an optical refractometer based on total internal reflection method. Optics express, 26(20), 25510–25523.

    Article  Google Scholar 

  4. Kumari, C. U., Samiappan, D., Kumar, R., & Sudhakar, T. (2019). Fiber optic sensors in ocean observation: A comprehensive review. Optik, 179, 351–360.

    Article  Google Scholar 

  5. Bin Omar, A. F., MatJafri, B., & Zubir, M. (2009). Turbidimeter design and analysis: A review on optical fiber sensors for the measurement of water turbidity. Sensors, 9(10), 8311–8335.

    Article  Google Scholar 

  6. Sharma, A. K., Gupta, J., & Sharma, I. (2019). Fiber optic evanescent wave absorption-based sensors: A detailed review of advancements in the last decade (2007–18). Optik, 183, 1008–1025.

    Article  Google Scholar 

  7. Hou, B., Grosso, P., & Le Menn, M. (2013). Principle and implementations of a refracto-nephelo-turbidimeter for seawater measurements. Optical Engineering, 52(4), 044402.

    Article  Google Scholar 

  8. Kumari, C. U., Samiappan, D., Kumar, R., & Sudhakar, T. (2019). Development of a highly accurate and fast responsive salinity sensor based on Nuttall apodized Fiber Bragg Grating coated with hygroscopic polymer for ocean observation. Optical Fiber Technology, 53, 102036.

    Article  Google Scholar 

  9. Lamb, D. W., Bunganaen, Y., Louis, J., Woolsey, G. A., Oliver, R., & White, G. (2004). Fibre evanescent field absorption (FEFA): An optical fibre technique for measuring light absorption in turbid water samples. Marine and Freshwater Research, 55(5), 533–543.

    Article  Google Scholar 

  10. Yeoh, S., Matjafri, M. Z., Mutter, K. N., & Oglat, A. A. (2019). Plastic fiber evanescent sensor in measurement of turbidity. Sensors and Actuators A: Physical, 285, 1–7.

    Article  Google Scholar 

  11. Pahurkar, V. G., Tamgadge, Y. S., Gambhire, A. B., & Muley, G. G. (2015). Evanescent wave absorption based polyaniline cladding modified fiber optic intrinsic biosensor for glucose sensing application. Measurement, 61, 9–15.

    Article  Google Scholar 

  12. Tian, Y., Wang, W., Wu, N., Zou, X., & Wang, X. (2011). Tapered optical fiber sensor for label-free detection of biomolecules. Sensors, 11(4), 3780–3790.

    Article  Google Scholar 

  13. Lou, J., Xu, H. Z., Xu, B., Huang, J., Li, B. C., & Shen, W. M. (2014). Fiber-optic evanescent wave sensor with a segmented structure. Applied Optics, 53(19), 4200–4205.

    Article  Google Scholar 

  14. Gao, S. S., Qiu, H. W., Zhang, C., Jiang, S. Z., Li, Z., Liu, X. Y., Yue, W. W., Yang, C., Huo, Y. Y., Feng, D. J., & Li, H. S. (2016). Absorbance response of a graphene oxide coated U-bent optical fiber sensor for aqueous ethanol detection. RSC Advances, 6(19), 15808–15815.

    Article  Google Scholar 

  15. Wang, J. N., & Luo, C. Y. (2012). Long-period fiber grating sensors for the measurement of liquid level and fluid-flow velocity. Sensors, 12(4), 4578–4593.

    Article  Google Scholar 

  16. Kim, D. W., Zhang, Y., Cooper, K. L., & Wang, A. (2005). In-fiber reflection mode interferometer based on a long-period grating for external refractive-index measurement. Applied Optics, 44(26), 5368–5373.

    Article  Google Scholar 

  17. Bremer, K., & Roth, B. (2015). Fibre optic surface plasmon resonance sensor system designed for smartphones. Optics Express, 23(13), 17179–17184.

    Article  Google Scholar 

  18. Samavati, Z., Samavati, A., Ismail, A. F., Rahman, M. A., & Othman, M. H. D. (2018). Intensity modulated silver coated glass optical fiber refractive index sensor. Chinese Optics Letters, 16(9), 090602.

    Article  Google Scholar 

  19. Messica, A., Greenstein, A., & Katzir, A. (1996). Theory of fiber-optic, evanescent-wave spectroscopy and sensors. Applied Optics, 35(13), 2274–2284.

    Article  Google Scholar 

  20. Xiong, F. B., Zhu, W. Z., Lin, H. F., & Meng, X. G. (2014). Fiber-optic sensor based on evanescent wave absorbance around 2.7 μm for determining water content in polar organic solvents. Applied Physics B, 115(1), 129–135.

    Article  Google Scholar 

  21. Bal, H. K., Brodzeli, Z., Dragomir, N. M., Collins, S. F., & Sidiroglou, F. (2012). Uniformly thinned optical fibers produced via HF etching with spectral and microscopic verification. Applied Optics, 51(13), 2282–2287.

    Article  Google Scholar 

  22. Franz, G., Schamberger, F., Zare, H. H., Bröskamp, S. F., & Jocham, D. (2017). Bi-layer sandwich film for antibacterial catheters. Beilstein Journal of Nanotechnology, 8(1), 1982–2001.

    Article  Google Scholar 

  23. Apriyanto, H., Ravet, G., Bernal, O. D., Cattoen, M., Seat, H. C., Chavagnac, V., & Sharp, J. H. (2018). Comprehensive modeling of multimode fiber sensors for refractive index measurement and experimental validation. Scientific Reports, 8(1), 1–13.

    Article  Google Scholar 

  24. Austin, R. W., & Halikas, G. (1976). The index of refraction of seawater. Technical Report, Scripps Institution of Oceanography, University of California.

  25. Reef Edition, Refractometers And Salinity Measurement. http://www.reefedition.com/refractometers-salinity-measurement/. Accessed 3 April 2020

  26. Sequeira, F., Duarte, D., Bilro, L., Rudnitskaya, A., Pesavento, M., Zeni, L., & Cennamo, N. (2016). Refractive index sensing with D- shaped plastic optical fibers for chemical and biochemical applications. Sensors, 16(12), 2119.

    Article  Google Scholar 

  27. Kundu, T., Sai, V. V. R., Dutta, R., Titas, S., Kumar, P., & Mukherjee, S. (2010). Development of evanescent wave absorbance-based fibre-optic biosensor. Pramana, 75(6), 1099–1113.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Nano Research Center of SRM Institute of Science and Technology for helping in fabricating the proposed sensor. The authors also thank the authorities of the National Institute of Ocean Technology, Pallikaranai, Chennai for permitting to utilize commercial salinity and turbidity sensors to validate the proposed fiber optic sensor.

Funding

This work was supported by the Naval research Board, Defense Research and Development Organization, India [Grant number: NRB/4003/PG/405 and NRB-405/OEP/17–18]; and Selective Excellence Initiative, SRM Institute of Science and Technology, India [Grant number: SRMU/R/AR(A)/2015/126/1866].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kumar.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uma Kumari, C.R., Kumar, R., Samiappan, D. et al. Development of a High Sensitive Refractive Index Sensor Based on Evanescent Wave Absorbance effect in Reflective Mode for Ocean Observation. Wireless Pers Commun 121, 411–427 (2021). https://doi.org/10.1007/s11277-021-08643-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08643-5

Keywords

Navigation