Skip to main content

Advertisement

Log in

Uplink Power Allocation for Throughput and Energy Efficiency in Cellular Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Two distributed power allocation schemes are proposed to improve the energy efficiency and throughput in cellular networks subject to outage probability limits. The effects of path loss, log normal shadowing, and Rayleigh fading are considered. Upper and lower bounds on the outage probability are derived based on the normalized signal to interference plus noise ratio (SINR). A power allocation problem for throughput maximization is presented and solved using the Lagrangian method. As this problem has high computational complexity, it is split into two subproblems. Then, a power allocation problem is proposed to improve the energy efficiency. This problem is in convex fractional programming form, so a parametric transformation is used to convert it into a subtractive optimization problem which can be solved iteratively. Results are presented which show that the proposed algorithms provide better performance than existing power allocation schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kwon, Y., Hwang, T., & Wang, X. (2015). Energy-efficient transmit power control for multi-tier MIMO HetNets. IEEE Journal on Selected Areas in Communications, 33(10), 2070–2086.

    Article  Google Scholar 

  2. Gandotra, P., Jha, R. K., & Jain, S. (2017). Green communication in next generation cellular networks: A survey. IEEE Access, 5, 11727–11758.

    Article  Google Scholar 

  3. Abrol, A., & Jha, R. K. (2016). Power optimization in 5G networks: A step towards green communication. IEEE Access, 4, 1355–1374.

    Article  Google Scholar 

  4. Cui, S., Yousefi’zadeh, H., & Gu, X. (2016). An optimal power control algorithm for STDMA MAC protocols in multihop wireless networks. IEEE Transactions on Wireless Communications, 15(5), 3131–3142.

    Article  Google Scholar 

  5. Han, Y., Tao, X., & Zhang, X. (2018). Power allocation for device to device underlay communication with femtocell using Stackelberg game. In: Proceedings of IEEE wireless communications and networking conference, Barcelona, Spain.

  6. Brighente, A., & Tomasin, S. (2019). Power allocation for non-orthogonal millimeter wave systems with mixed traffic. IEEE Transactions on Wireless Communications, 18(1), 432–443.

    Article  Google Scholar 

  7. Pham, T. M., Farrell, R., & Tran, L. (2019). Revisiting the MIMO capacity with per antenna power constraint: Fixed point iteration and alternating optimization. IEEE Transactions on Wireless Communications, 18(1), 388–401.

    Article  Google Scholar 

  8. Miridakis, N. I., Xia, M., & Tsiftsis, T. A. (2018). Optimal power allocation and active interference mitigation for spatial multiplexed MIMO cognitive systems. IEEE Transactions on Vehicular Technology, 67(4), 3349–3360.

    Article  Google Scholar 

  9. Grandhi, S. A., Vijayan, R., Goodman, D. J., & Zander, J. (1993). Centralized power control in cellular radio systems. IEEE Transactions on Vehicular Technology, 42(4), 466–468.

    Article  Google Scholar 

  10. Zhou, J., Chen, J., Kikuchi, H., Sasaki, S., & Muramatsu, S. (2002). Convergence rate evaluation of a DS-CDMA cellular system with centralized power control by genetic algorithms. In: Proceedings of IEEE wireless communications and networking conference, Orlando, FL (pp. 177–182).

  11. Moallemi, N., Biguesh, M., & Gazor, S. (2010). On the convergence of iterative non-cooperative centralized power controllers for multiple adjacent asynchronous cellular networks. In: Proceedings of biennial symposium on communications, Kingston, ON (pp. 327–330).

  12. Chandrasekhar, V., Andrews, J. G., Shen, Z., Muharemovic, T., & Gatherer, A. (2009). Distributed power control in femtocell underlay cellular networks. In: Proceedings of IEEE global telecommunications conference, Honolulu, HI.

  13. Yuan, Y., Yang, T., Xu, Y., Feng, H., & Hu, B. (2018). A cascaded channel power allocation for D2D underlaid cellular networks using matching theory. In: Proceedings of wireless communications and networking conference, Barcelona, Spain.

  14. Zhou, X., Wang, G., Feng, G., Qin, S., & Guo, Y. (2016). Dynamic power control for maximizing system throughput in enterprise femtocell networks. In: Proceedings of international conference on networking and network applications, Hokkaido, Japan (pp. 184–189).

  15. Liu, X., Li, Y., Xiao, L., & Wang, J. (2018). Performance analysis and power control for multi antenna V2V underlay massive MIMO. IEEE Transactions on Wireless Communications, 17(7), 4374–4387.

    Article  Google Scholar 

  16. Rasti, M., Hasan, M., Le, L. B., & Hossain, E. (2015). Distributed uplink power control for multi cell cognitive radio networks. IEEE Transactions on Communications, 63(3), 628–642.

    Article  Google Scholar 

  17. Foukalas, F., Shakeri, R., & Khattab, T. (2018). Distributed power allocation for multi flow carrier aggregation in heterogeneous cognitive cellular networks. IEEE Transactions on Wireless Communications, 17(4), 2486–2498.

    Article  Google Scholar 

  18. Li, J., Li, S., Zhao, F., & Du, R. (2014). Co-channel interference modeling in cognitive wireless networks. IEEE Transaction on Communications, 62(9), 3114–3128.

    Article  Google Scholar 

  19. Coulson, A. J., Williamson, A. G., & Vaughan, R. G. (1998). A statistical basis for log normal shadowing effects in multipath fading channels. IEEE Transaction on Communications, 46(4), 494–502.

    Article  Google Scholar 

  20. Alghorani, Y., Kaddoum, G., Muhaidat, S., Pierre, S., & Al-Dhahir, N. (2016). On the performance of multihop intervehicular communications systems over n*Rayleigh fading channels. IEEE Wireless Communications Letters, 5(2), 116–119.

    Article  Google Scholar 

  21. Ahmed, M. H., & Yanikomeroglu, H. (2006). A novel scheme for aggregate throughput maximization with fairness constraints in cellular networks. In: Proceedings of IEEE vehicular technology conference, Montreal, QC.

  22. Foschini, G. J., & Miljanic, Z. (1993). A simple distributed autonomous power control algorithm and its convergence. IEEE Transactions on Vehicular Technology, 42(4), 641–646.

    Article  Google Scholar 

  23. Rasti, M., Sharafat, A. R., & Zander, J. (2011). Pareto and energy-efficient distributed power control with feasibility check in wireless networks. IEEE Transactions on Information Theory, 57(1), 245–255.

    Article  MathSciNet  Google Scholar 

  24. Ho, D. H., & Gulliver, T. A. (2019). Prioritised and selective power control in cellular wireless networks. IET Communications, 13(4), 433–441.

    Article  Google Scholar 

  25. Jiang, Y., et al. (2017). Energy efficient non-cooperative power control in small cell networks. IEEE Transactions on Vehicular Technology, 66(8), 7540–7547.

    Article  Google Scholar 

  26. Ho, D. H., & Gulliver, T. A. Optimal power allocation in cellular networks based on outage probability and normalized SINR, submitted.

  27. Aslani, R., & Rasti, M. (2020). A distributed power control algorithm for energy efficiency maximization in wireless cellular networks. IEEE Wireless Communications Letters, 9(11), 1975–1979.

    Article  Google Scholar 

  28. Sunandita, D., & Ashraf, H. (2019). Network coverage in interference limited wireless sensor networks. Wireless Personal Communications, 109(1), 139–153.

    Article  Google Scholar 

  29. Park, S.-H., Kim, J. S., & Chung, M. Y. (2017). Resource selection scheme for the transmission of scheduling assignment in device-to-device communications. Wireless Personal Communications, 97(3), 4631–4649.

    Article  Google Scholar 

  30. Wang, J., Xia, B., Xiao, K., Gao, Y., & Ma, S. (2018). Outage performance analysis for wireless non-orthogonal multiple access systems. IEEE Access, 6, 3611–3618.

    Article  Google Scholar 

  31. Keeler, H. P., Błaszczyszyn, B., & Karray, M. K. (2013). SINR-based \(k\)-coverage probability in cellular networks with arbitrary shadowing. In: Proceedings of IEEE international symposium on information theory (pp. 1167–1171). Istanbul, Turkey.

  32. Altieri, A., Rey Vega, L., Piantanida, P., & Galarza, C. . G. (2014). On the outage probability of the full duplex interference limited relay channel. IEEE Journal on Selected Areas in Communications, 32(9), 1765–1777.

    Article  Google Scholar 

  33. Alam, A. M., Mary, P., Baudais, J.-Y., & Lagrange, X. (2017). Asymptotic analysis of area spectral efficiency and energy efficiency in PPP networks with SLNR precoder. IEEE Transactions on Communications, 65(7), 3172–3185.

    Article  Google Scholar 

  34. Yu, L., Liu, W., & Langley, R. (2010). SINR analysis of the subtraction based SMI beamformer. IEEE Transactions on Signal Processing, 58(11), 5926–5932.

    Article  MathSciNet  Google Scholar 

  35. Gao, X., Yang, K., Wu, J., Zhang, Y., & An, J. (2017). Energy efficient resource allocation and power control for downlink multi cell OFDMA networks. In: Proceedings of IEEE global communications conference, Singapore.

  36. Bhargav, N., et al. (2018). On the product of two \(\kappa\)-\(\mu\) random variables and its application to double and composite fading channels. IEEE Transactions on Wireless Communications, 17(4), 2457–2470.

    Article  Google Scholar 

  37. Annamalai, A., Tellambura, C., & Bhargava, V. K. (2001). Simple and accurate methods for outage analysis in cellular mobile radio systems-A unified approach. IEEE Transaction on Communications, 49(2), 303–316.

    Article  Google Scholar 

  38. Alouini, M., & Simon, M. K. (2000). An MGF based performance analysis of generalized selection combining over Rayleigh fading channels. IEEE Transaction on Communications, 48(3), 401–415.

    Article  Google Scholar 

  39. Roussas, G. G. (1996). Exponential probability inequalities with some applications: Statistics, probability and game theory. Institute of Mathematical Statistics Lecture Notes - Monograph Series, 30, 303–319.

    Article  Google Scholar 

  40. Mitrinovic, D. S., Pecaric, J. E., & Fink, A. M. (1993). Classical and new inequalities in analysis, mathematics and its applications (pp. 69–72). Dordrecht: Springer.

    Google Scholar 

  41. Pandey, K., Arya, R., & Kumar, S. (2021). Lagrange’s multiplier based resource management for energy efficient D2D communication in 5G networks. International Journal of System Assurance Engineering and Management. https://doi.org/10.1007/s13198-020-01045-z.

    Article  Google Scholar 

  42. Salh, A., Audah, L., Shah, N. S. M., & Hamzah, S. A. (2020). Energy-efficient power allocation with hybrid beamforming for millimetre-wave 5G massive MIMO system. Wireless Personal Communications, 115(1), 43–59.

    Article  Google Scholar 

  43. Li, X., & Zeng, Q.-A. (2006). Capture effect in the IEEE 802.11 WLANs with Rayleigh fading, shadowing, and path loss. In: Proceedings of IEEE international conference on wireless and mobile computing, networking and communications, Montreal, QC, (pp. 110–115).

  44. Han, S. Y., Abu-Ghazaleh, N. B., & Lee, D. (2016). Efficient and consistent path loss model for mobile network simulation. IEEE/ACM Transactions on Networking, 24(3), 1774–1786.

    Article  Google Scholar 

  45. Jagannathan, S., Zawodniok, M., & Shang, Q. (2006). Distributed power control for cellular networks in the presence of channel uncertainties. IEEE Transactions on Wireless Communications, 5(3), 540–549.

    Article  Google Scholar 

  46. Handayani, P., Mubarokah, L., & Hendrantoro, G. (2015). Pathloss and shadowing characteristics in indoor environment at 2.4 GHz band. In: Proceedings of international seminar on intelligent technology and its applications, Surabaya, Indonesia, (pp. 423–428).

  47. Du, Z., Cheng, J., & Beaulieu, N. C. (2006). Accurate error-rate performance analysis of OFDM on frequency selective Nakagami-\(m\) fading channels. IEEE Transaction on Communications, 54(2), 319–328.

    Article  Google Scholar 

  48. Kim, K. J., Kwon, S. Y., Hong, E. K., & Whang, K. C. (2000). Effect of tap spacing on the performance of direct sequence spread spectrum RAKE receiver. IEEE Transaction on Communications, 48(6), 1029–1036.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danh H. Ho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, D.H., Gulliver, T.A. Uplink Power Allocation for Throughput and Energy Efficiency in Cellular Networks. Wireless Pers Commun 121, 577–596 (2021). https://doi.org/10.1007/s11277-021-08651-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08651-5

Keywords

Navigation