Skip to main content
Log in

Spectral Analysis of Atmospheric Radar Echoes Using a Non-Stationary Approach

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

This article has been updated

Abstract

Generally, radar echo is analysed in the assumptions that echo comes from stationary processes. Signal processing algorithms of atmospheric radar echoes are based on stationarity assumptions. In this paper, we propose a technique for processing the radar echoes by still preserving their non-stationary nature. The proposed algorithm is based on the complex empirical mode decomposition (CEMD) of non-stationary complex atmospheric radar signals. The well-established technique Hilbert Huang transform has been applied for the practical radar echoes collected from the Mesosphere-Stratosphere-Troposphere radar located at Gadanki Andhra Pradesh. The data is subjected to proposed CEMD algorithm and results are obtained and Stationarity is tested using the wavelet transform. The inference from the obtained results is of two-fold: Hilbert spectrum is very well localized and can be used for stationarity test like Wavelet spectrum, the frequency components in Hilbert spectrum lies in the signal region of Fourier spectrum thereby resembling it. For better interpretation, the algorithm is also applied for simulated signals under both stationary and non-stationary environments. The results motivate us for better exploitation of HHT for the spectral analysis of atmospheric radar echoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 11 July 2021

    The original version of this article has been revised: The copyright holder name has been corrected

References

  1. Ou, J., Zhang, J., & Zhan, R. (2020). Processing technology based on radar signal design and classification. International Journal of Aerospace Engineering. https://doi.org/10.1155/2020/4673763

    Article  Google Scholar 

  2. Dmitriev, D. D., Ratushniak, V. N., Vladimirov, V. M., & Fateev, Y. L. (2020, March). Methods for Radar Atmospheric Sensing Using Radars with Low-Element Antenna Arrays. In 2020 Moscow Workshop on Electronic and Networking Technologies (MWENT) (pp. 1-5). IEEE. https://doi.org/10.1109/MWENT47943.2020.9067446

  3. Rao, V. J., Rao, D. N., Ratnam, M. V., Mohan, K., & Rao, S. V. B. (2003). Mean vertical velocities measured by Indian MST radar and comparison with indirectly computed values. Journal of Applied Meteorology and Climatology, 42(4), 541–552. https://doi.org/10.1175/1520-0450(2003)042%3c0541:MVVMBI%3e2.0.CO;2

    Article  Google Scholar 

  4. Zrnic, D. S. (1979). Estimation of spectral moments for weather echoes. IEEE Transactions on Geoscience Electronics, 17(4), 113–128. https://doi.org/10.1109/TGE.1979.294638

    Article  Google Scholar 

  5. Dias, J. M., & Leitão, J. M. (2000). Nonparametric estimation of mean Doppler and spectral width. IEEE transactions on geoscience and remote sensing, 38(1), 271–282. https://doi.org/10.1109/36.823919

    Article  Google Scholar 

  6. Stoica, P., & Sandgren, N. (2006). Smoothed nonparametric spectral estimation via cepsturm thresholding-introduction of a method for smoothed nonparametric spectral estimation. IEEE Signal Processing Magazine, 23(6), 34–45. https://doi.org/10.1109/SP-M.2006.248710

    Article  Google Scholar 

  7. Reddy, T. S., & Reddy, G. R. (2010). MST radar signal processing using cepstral thresholding. IEEE transactions on geoscience and remote sensing, 48(6), 2704–2710. https://doi.org/10.1109/TGRS.2009.2039937

    Article  Google Scholar 

  8. Reddy, T. S., & Reddy, G. R. (2010). Spectral analysis of atmospheric radar signal using filter banks—polyphase approach. Digital Signal Processing, 20(4), 1061–1071. https://doi.org/10.1016/j.dsp.2009.10.032

    Article  Google Scholar 

  9. Rao, D. U. M., Reddy, T. S., & Reddy, G. R. (2014). Atmospheric radar signal processing using principal component analysis. Digital Signal Processing, 32, 79–84. https://doi.org/10.1016/j.dsp.2014.05.009

    Article  Google Scholar 

  10. Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., ... & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences454(1971), 903-995. https://doi.org/10.1098/rspa.1998.0193

  11. Tang, J., Zou, Q., Tang, Y., Liu, B., & Zhang, X. K. (2007, July). Hilbert-Huang transform for ECG de-noising. In 2007 1st international conference on bioinformatics and biomedical engineering (pp. 664-667). IEEE. https://doi.org/10.1109/ICBBE.2007.173

  12. Huang, N. E., Wu, M. L., Qu, W., Long, S. R., & Shen, S. S. (2003). Applications of Hilbert-Huang transform to non-stationary financial time series analysis. Applied Stochastic Models in Business and Industry, 19(3), 245–268. https://doi.org/10.1002/asmb.501

    Article  MathSciNet  MATH  Google Scholar 

  13. Raju, C. (2019). Analysis and evaluation of data-adaptive spectral estimation algorithms for processing MST radar data. Remote Sensing in Earth Systems Sciences, 2(4), 161–172. https://doi.org/10.1007/s41976-019-00016-8

    Article  Google Scholar 

  14. Raju, C., Reddy, T. S., & Reddy, G. R. (2019). Fast implementation of sparse iterative covariance-based estimation for processing MST radar data. SN Applied Sciences, 1(9), 1–9. https://doi.org/10.1007/s42452-019-0930-5

    Article  Google Scholar 

  15. Raju, C., & Reddy, T. S. (2018). MST radar signal processing using iterative adaptive approach. Geoscience Letters, 5(1), 1–10. https://doi.org/10.1186/s40562-018-0120-0

    Article  Google Scholar 

  16. Tanaka, T., & Mandic, D. P. (2007). Complex empirical mode decomposition. IEEE Signal Processing Letters, 14(2), 101–104. https://doi.org/10.1109/LSP.2006.882107

    Article  Google Scholar 

  17. Altaf, M. U. B., Gautama, T., Tanaka, T., & Mandic, D. P. (2007, April). Rotation invariant complex empirical mode decomposition. In 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP'07 (Vol. 3, pp. III-1009). IEEE. https://doi.org/10.1109/ICASSP.2007.366853

  18. Rilling, G., & Flandrin, P. (2007). One or two frequencies? The empirical mode decomposition answers. IEEE Transactions on Signal Processing, 56(1), 85–95. https://doi.org/10.1109/TSP.2007.906771

    Article  MathSciNet  MATH  Google Scholar 

  19. Rao, P. B., Jain, A. R., Kishore, P., Balamuralidhar, P., Damle, S. H., & Viswanathan, G. (1995). Indian MST radar 1. System description and sample vector wind measurements in ST mode. Radio Science30(4), 1125-1138. https://doi.org/10.1029/95RS00787

  20. Jevrejeva, S., Moore, J. C., & Grinsted, A. (2003). Influence of the Arctic Oscillation and El Niño‐Southern Oscillation (ENSO) on ice conditions in the Baltic Sea: The wavelet approach. Journal of Geophysical Research: Atmospheres108(D21). https://doi.org/10.1029/2003JD003417

Download references

Acknowledgement

Authors gratefully thank the National Atmospheric Research Laboratory (NARL, Gadanki) technical staff for their support in carrying out the observations reported here.

Funding

The investigations presented in the manuscript are not funded by any external agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samiappan Dhanalakshmi.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abel, J.D.K., Dhanalakshmi, S. & Kumar, R. Spectral Analysis of Atmospheric Radar Echoes Using a Non-Stationary Approach. Wireless Pers Commun 121, 1011–1023 (2021). https://doi.org/10.1007/s11277-021-08669-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08669-9

Keywords

Navigation