Skip to main content
Log in

A Novel Routing Protocol for Underwater Wireless Sensor Network Using Pareto Uninformed and Heuristic Search Techniques

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In underwater communication, establishing a communication link between the sensor in the sea bed and the surface sinks is a daunting task. Further, the data has to be transmitted with minimum delay and maximum reliability. Therefore, the present study proposes a biobjective routing protocol for underwater wireless sensor networks. The existing protocols are reviewed and it is found that the traditional depth based and vector-based routing protocols are not able to tackle these conflicting objectives and hence suffer transmission failures with high delay. A biobjective optimization of delay and reliability of routes is proposed to obtain pareto-optimal routes employing uninformed search technique and a modified greedy best first search heuristic. Through simulation experiments, it is found that the biobjective protocol performs better than depth based, delay based and reliability-based routing protocols. However, since the biobjective routing problem in underwater wireless sensor networks is known to be NP-hard and dynamic in nature, the computational effort of uninformed search in yielding the exact solutions increases as the network size increases. The modified greedy best first search heuristic is employed to yield sub-optimal routes with less computational effort without compromising on the quality of the solutions and hence suitable for larger networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cardei, M. (2006). Energy-efficient scheduling and hybrid communication architecture for underwater littoral surveillance. Computer Communications, 29, 3354–3365. https://doi.org/10.1016/j.comcom.2006.01.030

    Article  Google Scholar 

  2. Ismail, N., & Mohamad, M. M. (2018). Review on energy efficient opportunistic routing protocol for underwater wireless sensor networks. KSII Transactions on Internet and Information Systems, 12(7), 3064–3094. https://doi.org/10.3837/tiis.2018.07.006

    Article  Google Scholar 

  3. Noh, Y., Lee, U., Lee, S., Wang, P., Vieira, L. F. M., Cui, J. H., Gerla, M., & Kim, K. (2016). HydroCast: pressure routing for underwater sensor networks. IEEE Transactions on Vehicular Technology, 65(1), 333–347. https://doi.org/10.1109/TVT.2015.2395434

    Article  Google Scholar 

  4. Jin, Z., Ding, M., & Li, S. (2018). An energy-efficient and obstacle-avoiding routing protocol for underwater acoustic sensor networks. Sensors (Switzerland), 18(12), 1–19. https://doi.org/10.3390/s18124168

    Article  Google Scholar 

  5. Wang, H., Wang, S., Zhang, E., & Lu, L. (2018). An energy balanced and lifetime extended routing protocol for underwater sensor networks. Sensors (Switzerland), 18(5), 1–26. https://doi.org/10.3390/s18051596

    Article  Google Scholar 

  6. Durrani, M. Y., Tariq, R., Aadil, F., Maqsood, M., Nam, Y., & Muhammad, K. (2019). Adaptive node clustering technique for smart ocean under water sensor network (SOSNET). Sensors (Switzerland), 19(5), 1–22. https://doi.org/10.3390/s19051145

    Article  Google Scholar 

  7. Huang, C.-J., Wang, Y.-W., Liao, H.-H., Lin, C.-F., Hu, K.-W., & Chang, T.-Y. (2011). A power-efficient routing protocol for underwater wireless sensor networks. Applied Soft Computing, 11(2), 2348–2355. https://doi.org/10.1016/j.asoc.2010.08.014

    Article  Google Scholar 

  8. Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: research challenges. Ad Hoc Networks, 3(3), 257–279. https://doi.org/10.1016/j.adhoc.2005.01.004

    Article  Google Scholar 

  9. Liaqat, T., Akbar, M., Javaid, N., Qasim, U., Khan, Z., Javaid, Q., Alghamdi, T., & Niaz, I. (2016). On reliable and efficient data gathering based routing in underwater wireless sensor networks. Sensors, 16(9), 1391. https://doi.org/10.3390/s16091391

    Article  Google Scholar 

  10. Khasawneh, A., Latiff, M. S. B. A., Kaiwartya, O., & Chizari, H. (2018). A reliable energy-efficient pressure-based routing protocol for underwater wireless sensor network. Wireless Networks, 24(6), 2061–2075. https://doi.org/10.1007/s11276-017-1461-x

    Article  Google Scholar 

  11. Liu, J., Yu, M., Wang, X., Liu, Y., Wei, X., & Cui, J. (2018). RECRP: an underwater reliable energy-efficient cross-layer routing protocol. Sensors (Switzerland), 18(12), 1–14. https://doi.org/10.3390/s18124148

    Article  Google Scholar 

  12. Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks : research challenges. Ad Hoc Networks, 3, 257–279. https://doi.org/10.1016/j.adhoc.2005.01.004

    Article  Google Scholar 

  13. Nowsheen, N., Karmakara, G., & Kamruzzaman, J. (2016). PRADD: a path reliability-aware data delivery protocol for underwater acoustic sensor networks. Journal of network and computer applications, 75(March), 385–397.

    Article  Google Scholar 

  14. Bu, R., Wang, S., & Wang, H. (2018). Fuzzy logic vector–based forwarding routing protocol for underwater acoustic sensor networks. Transactions on Emerging Telecommunications Technologies, 29(3), 1–18. https://doi.org/10.1002/ett.3252

    Article  Google Scholar 

  15. Gomathi, R. M., & Martin Leo Manickam, J. (2018). Energy efficient shortest path routing protocol for underwater acoustic wireless sensor network. Wireless Personal Communications, 98(1), 843–856. https://doi.org/10.1007/s11277-017-4897-5

    Article  Google Scholar 

  16. Climent, S., Sanchez, A., Capella, J. V., Meratnia, N., & Serrano, J. J. (2014). Underwater acoustic wireless sensor networks: advances and future trends in physical, MAC and routing layers. Sensors (Basel, Switzerland), 14(1), 795–833. https://doi.org/10.3390/s140100795

    Article  Google Scholar 

  17. Wu, H., Chen, X., Shi, C., Xiao, Y., & Xu, M. (2012). An ACOA-AFSA fusion routing algorithm for underwater wireless sensor network. International Journal of Distributed Sensor Networks. https://doi.org/10.1155/2012/920505

    Article  Google Scholar 

  18. Alfouzan, F., Shahrabi, A., Ghoreyshi, S. M., & Boutaleb, T. (2018). An efficient scalable scheduling MAC protocol for underwater sensor networks. Sensors (Switzerland). https://doi.org/10.3390/s18092806

    Article  Google Scholar 

  19. Cheng, C., & Li, L. (2016). Data gathering problem with the data importance consideration in underwater wireless sensor networks. Journal of Network and Computer Applications, 78(151), 300–312. https://doi.org/10.1016/j.jnca.2016.10.010

    Article  Google Scholar 

  20. Diamant, R., Francescon, R., & Zorzi, M. (2018). Topology-efficient discovery: a topology discovery algorithm for underwater acoustic networks. IEEE Journal of Oceanic Engineering, 43(4), 1200–1214. https://doi.org/10.1109/JOE.2017.2716238

    Article  Google Scholar 

  21. Ponnavaikko, P., Wilson, S. K., Stojanovic, M., Holliday, J., & Yassin, K. (2017). Delay-constrained energy optimization in high-latency sensor networks. IEEE Sensors Journal, 17(13), 4287–4298. https://doi.org/10.1109/JSEN.2017.2703639

    Article  Google Scholar 

  22. Basagni, S., Petrioli, C., Petroccia, R., & Stojanovic, M. (2010). Choosing the packet size in multi-hop underwater networks. OCEANS’ IEEE Sydney OCEANSSYD 2010. https://doi.org/10.1109/OCEANSSYD.2010.5603664

    Article  Google Scholar 

  23. Gupta, C. P., Banyal, R. K., & Karn, C. K. (2018). Delay minimising depth-based routing for multi-sink underwater wireless sensor networks. International Journal of Sensor Networks, 27(2), 85. https://doi.org/10.1504/ijsnet.2018.10014015

    Article  Google Scholar 

  24. Han, Y., & Fei, Y. (2016). DAP-MAC: A delay-aware probability-based MAC protocol for underwater acoustic sensor networks. Ad Hoc Networks, 48, 80–92. https://doi.org/10.1016/j.adhoc.2016.05.003

    Article  Google Scholar 

  25. Ullah, U., Khan, A., Altowaijri, S. M., Ali, I., Rahman, A. U., Vijay Kumar, V., Munsif, A., & Mahmood, H. (2019). Cooperative and delay minimization routing schemes for dense under water wireless sensor networks. Symmetry. https://doi.org/10.3390/sym11020195

    Article  Google Scholar 

  26. Wei, X., Liu, Y., Gao, S., Wang, X., & Yue, H. (2019). An RNN-based delay-guaranteed monitoring framework in underwater wireless sensor networks. IEEE Access, 7, 25959–25971. https://doi.org/10.1109/ACCESS.2019.2899916

    Article  Google Scholar 

  27. Faheem, M., Ngadi, M. A., & Gungor, V. C. (2019). Energy efficient multi-objective evolutionary routing scheme for reliable data gathering in Internet of underwater acoustic sensor networks. Ad Hoc Networks, 93, 101912. https://doi.org/10.1016/J.ADHOC.2019.101912

    Article  Google Scholar 

  28. Ayaz, M. (2012). Reliable data deliveries using packet optimization in multi-hop underwater sensor networks. Journal of King Saud University - Computer and Information Sciences, 24(1), 41–48. https://doi.org/10.1016/j.jksuci.2011.09.001

    Article  Google Scholar 

  29. Souiki, S., Feham, M., Feham, M., & Labraoui, N. (2014). Geographic routing protocols for underwater wireless sensor networks: a survey. International Journal of Wireless & Mobile Networks, 6(1), 69–87. https://doi.org/10.5121/ijwmn.2014.6106

    Article  Google Scholar 

  30. Goyal, N., Dave, M., & Verma, A. K. (2019). Protocol stack of underwater wireless sensor network: classical approaches and new trends. Wireless Personal Communications, 104(3), 995–1022. https://doi.org/10.1007/s11277-018-6064-z

    Article  Google Scholar 

  31. Hassan, W., Føre, M., Ulvund, J. B., & Alfredsen, J. A. (2019). Internet of fish: integration of acoustic telemetry with LPWAN for efficient real-time monitoring of fish in marine farms. Computers and Electronics in Agriculture, 163, 104850. https://doi.org/10.1016/j.compag.2019.06.005

    Article  Google Scholar 

  32. Xi, Z., Kan, X., Cao, L., Liu, H., Manogaran, G., Mastorakis, G., & Mavromoustakis, C. X. (2019). Research on underwater wireless sensor network and MAC protocol and location algorithm. IEEE Access, 7, 56606–56616. https://doi.org/10.1109/access.2019.2901375

    Article  Google Scholar 

  33. Ayaz, M., Baig, I., Abdullah, A., & Faye, I. (2011). A survey on routing techniques in underwater wireless sensor networks. Journal of Network and Computer Applications, 34(6), 1908–1927. https://doi.org/10.1016/j.jnca.2011.06.009

    Article  Google Scholar 

  34. Awan, K. M., Shah, P. A., Iqbal, K., Gillani, S., Ahmad, W., & Nam, Y. (2019). Underwater wireless sensor networks: a review of recent issues and challenges. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2019/6470359

    Article  Google Scholar 

  35. Khan, A., Ali, I., Ghani, A., Khan, N., Alsaqer, M., Ur Rahman, A., & Mahmood, H. (2018). Routing protocols for underwater wireless sensor networks: taxonomy, research challenges, routing strategies and future directions. Sensors (Switzerland). https://doi.org/10.3390/s18051619

    Article  Google Scholar 

  36. Yan, H., Shi, Z. J., & Cui, J.-H. (2008). DBR: depth-based routing for underwater sensor networks. NETWORKING 2008 Ad Hoc and Sensor Networks Wireless Networks Next Generation Internet. https://doi.org/10.1007/978-3-540-79549-0_7

    Article  Google Scholar 

  37. Ahmed, M., Salleh, M., & Channa, M. I. (2016). Routing protocols based on node mobility for underwater wireless sensor network ( UWSN ): a survey. Journal of Network and Computer Applications. https://doi.org/10.1016/j.jnca.2016.10.022

    Article  Google Scholar 

  38. Gupta, C. P., Karn, C. K., & Banyal, R. K. (2018). Delay minimising depth-based routing for multi-sink underwater wireless sensor networks. International Journal of Sensor Networks, 27(2), 85–94.

    Article  Google Scholar 

  39. Awais, M., Javaid, N., Rehman, A., Qasim, U., Alhussein, M., & Aurangzeb, K. (2019). Towards void hole alleviation by exploiting the energy efficient path and by providing the interference-free proactive routing protocols in IoT enabled underwater WSNs. Sensors (Switzerland), 19(6), 1–30. https://doi.org/10.3390/s19061313

    Article  Google Scholar 

  40. Noh, Y., Lee, U., Wang, P., Choi, B. S. C., & Gerla, M. (2013). VAPR: void-aware pressure routing for underwater sensor networks. IEEE Transactions on Mobile Computing, 12(5), 895–908. https://doi.org/10.1109/TMC.2012.53

    Article  Google Scholar 

  41. Butt, S. A., Bakar, K. A., Javaid, N., Gharaei, N., Ishmanov, F., Afzal, M. K., Mehmood, M. K., & Mujahid, M. A. (2019). Exploiting layered multi-path routing protocols to avoid void hole regions for reliable data delivery and efficient energy management for IoT-enabled underwater WSNs. Sensors (Basel, Switzerland), 19(3), 1–28. https://doi.org/10.3390/s19030510

    Article  Google Scholar 

  42. Mazinani, S. M., Yousefi, H., & Mirzaie, M. (2018). A vector-based routing protocol in underwater wireless sensor networks. Wireless Personal Communications, 100(4), 1569–1583. https://doi.org/10.1007/s11277-018-5654-0

    Article  Google Scholar 

  43. Wei, B., Luo, Y., Jin, Z., Wei, J., & Su, Y. (2013). ES-VBF: An energy saving routing protocol. In W. Lu, G. Cai, W. Liu, & X. Xing (Eds.), Proceedings of the 2012 international conference on information technology and software engineering. Lecture notes in electrical engineering (Vol. 210). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-34528-9_10

  44. Xie, P., Cui, J. H., & Lao, L. (2006). VBF: Vector-based forwarding protocol for underwater sensor networks. In F. Boavida, T. Plagemann, B. Stiller, C. Westphal, & E. Monteiro (Eds.), NETWORKING 2006. Networking technologies, services, and protocols; Performance of computer and communication networks; Mobile and wireless communications systems. NETWORKING 2006. Lecture Notes in Computer Science (Vol. 3976). Berlin, Heidelberg: Springer. https://doi.org/10.1007/11753810_111

  45. Deng, M., Chen, H., & Xie, L. (2018). DCO-MAC: a hybrid mac protocol for data collection in underwater acoustic sensor networks. Sensors (Switzerland). https://doi.org/10.3390/s18072300

    Article  Google Scholar 

  46. Zhuo, X., Qu, F., Yang, H., Wei, Y., Wu, Y., & Li, J. (2019). Delay and queue aware adaptive scheduling- based mac protocol for underwater acoustic sensor networks. IEEE Access, 7, 56263–56275. https://doi.org/10.1109/ACCESS.2019.2913209

    Article  Google Scholar 

  47. Dong, Y., Pu, L., Luo, Y., Peng, Z., Mo, H., Meng, Y., Zhao, Y., & Zhang, Y. (2018). Receiver-initiated handshaking MAC based on traffic estimation for underwater sensor networks. Sensors (Switzerland). https://doi.org/10.3390/s18113895

    Article  Google Scholar 

  48. Guo, P., Jiang, T., Zhu, G., & Chen, H.-H. (2008). Utilizing acoustic propagation delay to design MAC protocols for underwater wireless sensor networks. Wireless Communications and Mobile Computing, 8, 1035–1044. https://doi.org/10.1002/wcm

    Article  Google Scholar 

  49. Jafri, M. R., Sandhu, M. M., Latif, K., Khan, Z. A., Yasar, A. U. H., & Javaid, N. (2014). Towards delay-sensitive routing in underwater wireless sensor networks. Procedia Computer Science, 37, 228–235. https://doi.org/10.1016/j.procs.2014.08.034

    Article  Google Scholar 

  50. Su, Y., Fan, R., Fu, X., & Jin, Z. (2019). DQELR: an adaptive deep Q-network-based energy-and latency-aware routing protocol design for underwater acoustic sensor networks. IEEE Access. https://doi.org/10.1109/access.2019.2891590

    Article  Google Scholar 

  51. Wang, Z., Han, G., Qin, H., Zhang, S., & Sui, Y. (2018). An energy-aware and void-avoidable routing protocol for underwater sensor networks. IEEE Access, 6, 7792–7801. https://doi.org/10.1109/ACCESS.2018.2805804

    Article  Google Scholar 

  52. Wang, J., Shen, J., Shi, W., Qiao, G., Wu, S., & Wang, X. (2019). A novel energy-efficient contention-based MAC protocol used for OA-UWSN. Sensors (Switzerland). https://doi.org/10.3390/s19010183

    Article  Google Scholar 

  53. Xu, M., & Liu, L. (2016). Sender-receiver role-based energy-aware scheduling for internet of underwater things. IEEE Transactions on Emerging Topics in Computing, 7(2), 1–1. https://doi.org/10.1109/tetc.2016.2632749

    Article  MathSciNet  Google Scholar 

  54. Tuna, G. (2018). Clustering-based energy-efficient routing approach for underwater wireless sensor networks. International Journal of Sensor Networks, 27(1), 26–36.

    Article  Google Scholar 

  55. Wan, Z., Liu, S., Ni, W., & Xu, Z. (2018). An energy-efficient multi-level adaptive clustering routing algorithm for underwater wireless sensor networks. Cluster Computing, 8, 1–10. https://doi.org/10.1007/s10586-018-2376-8

    Article  Google Scholar 

  56. Mittal, N., Singh, U., Salgotra, R., & Bansal, M. (2019). An energy-efficient stable clustering approach using fuzzy-enhanced flower pollination algorithm for WSNs. Neural Computing and Applications. https://doi.org/10.1007/s00521-019-04251-4

    Article  Google Scholar 

  57. Kartha, J. J., & Jacob, L. (2015). Delay and lifetime performance of underwater wireless sensor networks with mobile element based data collection. International Journal of Distributed Sensor Networks. https://doi.org/10.1155/2015/128757

    Article  Google Scholar 

  58. Wahid, A., Lee, S., Jeong, H.-J., & Kim, D. (2011). EEDBR: energy-efficient depth-based routing protocol for underwater wireless sensor networks. Advanced Computer Science and Information Technology, 195, 223–234.

    Article  Google Scholar 

  59. Abbas, C. J. B., Montandon, R., Orozco, A. L. S., & Villalba, L. J. G. (2019). Ebvbf: energy balanced vector based forwarding protocol. IEEE Access, 7, 54273–54284. https://doi.org/10.1109/ACCESS.2019.2913026

    Article  Google Scholar 

  60. Kanthimathi, N. (2017). Balanced and multi-objective optimized opportunistic routing for underwater sensor networks. Wireless Personal Communications, 94(4), 2417–2440. https://doi.org/10.1007/s11277-016-3495-2

    Article  Google Scholar 

  61. Persis, D. J. (2019). A Bi-objective routing model for underwater wireless sensor network. In ACM international conference proceeding series (pp. 78–82).

  62. Faheem, M., Ngadi, M. A., & Gungor, V. C. (2019). Energy efficient multi-objective evolutionary routing scheme for reliable data gathering in Internet of underwater acoustic sensor networks. Ad Hoc Networks. https://doi.org/10.1016/j.adhoc.2019.101912

    Article  Google Scholar 

  63. Li, M., Du, X., & Peng, C. (2018). RSHSC-routing algorithm based on simplified harmony search and coding for UWSNs. Journal of Sensors. https://doi.org/10.1155/2018/1091630

    Article  Google Scholar 

  64. Zeng, B., & Dong, Y. (2015). An improved harmony search based energy-efficient routing algorithm for wireless sensor networks. Applied Soft Computing, 41, 135–147. https://doi.org/10.1016/j.asoc.2015.12.028

    Article  Google Scholar 

  65. Kumari, S., Mishra, P. K., & Anand, V. (2020). Integrated load balancing and void healing routing with cuckoo search optimization scheme for underwater. Wireless Personal Communications, 111(3), 1787–1803. https://doi.org/10.1007/s11277-019-06957-z

    Article  Google Scholar 

  66. Faheem, M., Butt, R. A., Raza, B., Alquhayz, H., Ashraf, M. W., Raza, S., & Ngadi, A. B. I. N. (2020). FFRP: dynamic firefly mating optimization inspired energy efficient routing protocol for internet of underwater wireless sensor networks. IEEE Access, 8, 39587–39604. https://doi.org/10.1109/ACCESS.2020.2976105

    Article  Google Scholar 

  67. Xu, M., & Liu, G. (2013). A multipopulation firefly algorithm for correlated data routing in underwater wireless sensor networks. International Journal of Distributed Sensor Networks, 2013, 1–14. https://doi.org/10.1155/2013/865154

    Article  Google Scholar 

  68. Sivakumar, V., & Rekha, D. (2019). A QoS-aware energy-efficient memetic flower pollination routing protocol for underwater acoustic sensor network. Concurrency and Computation: Practice and Experience. https://doi.org/10.1002/cpe.5166

    Article  Google Scholar 

  69. Zhang, M., Wang, N., He, Z., Yang, Z., & Guan, Y. (2019). Bi-objective vehicle routing for hazardous materials transportation with actual load dependent risks and considering the risk of each vehicle. IEEE Transactions on Engineering Management, 66(3), 429–442. https://doi.org/10.1109/TEM.2018.2832049

    Article  Google Scholar 

  70. Rubaiee, S., & Yildirim, M. B. (2019). An energy-aware multiobjective ant colony algorithm to minimize total completion time and energy cost on a single-machine preemptive scheduling. Computers and Industrial Engineering, 127(4), 240–252. https://doi.org/10.1016/j.cie.2018.12.020

    Article  Google Scholar 

  71. Altin-Kayhan, A., & Şendil, M. (2016). Optimal path selection under different data redundancy policies for energy efficient wireless sensor networks. Infor, 54(2), 121–146. https://doi.org/10.1080/03155986.2016.1167316

    Article  MathSciNet  Google Scholar 

  72. Li, X., & Li, M. (2015). Multiobjective local search algorithm-based decomposition for multiobjective permutation flow shop scheduling problem. IEEE Transactions on Engineering Management, 62(4), 544–557. https://doi.org/10.1109/TEM.2015.2453264

    Article  Google Scholar 

  73. Wang, L., Fang, C., Mu, C., & Liu, M. (2013). A Pareto-archived estimation-of-distribution project scheduling problem. IEEE Transactions on Engineering Management, 60(3), 617–626.

    Article  Google Scholar 

  74. Devarajan, J. P., & Robert, T. P. (2020). Swarm intelligent data aggregation in wireless sensor network. International Journal of Swarm Intelligence Research, 11(2), 1–18. https://doi.org/10.4018/IJSIR.2020040101

    Article  Google Scholar 

  75. Mahmoudzadeh, S., Powers, D. M. W., & Atyabi, A. (2019). UUV’s hierarchical de-based motion planning in a semi dynamic underwater wireless sensor network. IEEE Transactions on Cybernetics, 49(8), 2992–3005. https://doi.org/10.1109/TCYB.2018.2837134

    Article  Google Scholar 

  76. Tate, J., Woolford-Lim, B., Bate, I., & Yao, X. (2012). Evolutionary and principled search strategies for sensornet protocol optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 42(1), 163–180. https://doi.org/10.1109/TSMCB.2011.2161466

    Article  Google Scholar 

  77. Diamant, R., Bucris, Y., & Feuer, A. (2016). An efficient method to measure reliability of underwater acoustic communication links. Journal of Ocean Engineering and Science, 1(2), 129–134. https://doi.org/10.1016/j.joes.2016.03.006

    Article  Google Scholar 

  78. Awan, K. M., Nam, Y., Shah, P. A., Iqbal, K., Gillani, S., & Ahmad, W. (2019). Underwater wireless sensor networks: a review of recent issues and challenges. Wireless Communications and Mobile Computing, 2019, 1–20. https://doi.org/10.1155/2019/6470359

    Article  Google Scholar 

  79. Guan, Q., Ji, F., Liu, Y., Yu, H., & Chen, W. (2019). Distance-vector-based opportunistic routing for underwater acoustic sensor networks. IEEE Internet of Things Journal, 6(2), 3831–3839. https://doi.org/10.1109/JIOT.2019.2891910

    Article  Google Scholar 

  80. Lee, U., Kong, J., Gerla, M., Park, J., & Magistretti, E. (2007). Time-critical underwater sensor diffusion with no proactive exchanges and negligible reactive floods. Ad Hoc Networks, 5, 943–958. https://doi.org/10.1016/j.adhoc.2007.02.012

    Article  Google Scholar 

  81. Nguyen, V. D., Luong, N. S., & Pätzold, M. (2017). A method to estimate the path gains and propagation delays of underwater acoustic channels using the arrival phase information of the multipath components. AEU - International Journal of Electronics and Communications, 73, 129–138. https://doi.org/10.1016/j.aeue.2017.01.003

    Article  Google Scholar 

  82. Han, G., Jiang, J., Bao, N., Wan, L., & Guizani, M. (2015). Routing protocols for underwater wireless sensor networks. IEEE Communications Magazine, 53(11), 72–78. https://doi.org/10.1109/MCOM.2015.7321974

    Article  Google Scholar 

  83. Jouglet, A., & Carlier, J. (2011). Dominance rules in combinatorial optimization problems. European Journal of Operational Research, 212(3), 433–444. https://doi.org/10.1016/j.ejor.2010.11.008

    Article  MathSciNet  MATH  Google Scholar 

  84. Lavin, A. (2015). A Pareto front - based multiobjective path planning algorithm. arXiv 2015, arXiv:1505.05947

  85. Cai, X., Sun, H., Zhang, Q., & Huang, Y. (2019). A grid weighted sum Pareto local search for combinatorial multi and many-objective optimization. IEEE Transactions on Cybernetics. https://doi.org/10.1109/TCYB.2018.2849403

    Article  Google Scholar 

  86. Tang, C., & McKinley, P. K. (2006). Energy optimization under informed mobility. IEEE Transactions on Parallel and Distributed Systems, 17(9), 947–962. https://doi.org/10.1109/TPDS.2006.122

    Article  Google Scholar 

  87. Qureshi, K. N., Bashir, F., & Abdullah, A. H. (2019). Distance and signal quality aware next hop selection routing protocol for vehicular ad hoc networks. Neural Computing and Applications. https://doi.org/10.1007/s00521-019-04320-8

    Article  Google Scholar 

  88. Yuan, C., Licht, S., & He, H. (2018). Formation learning control of multiple autonomous underwater vehicles with heterogeneous nonlinear uncertain dynamics. IEEE Transactions on Cybernetics, 48(10), 2920–2934. https://doi.org/10.1109/TCYB.2017.2752458

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinil Persis.

Ethics declarations

Conflicts of interest

The author declares no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Persis, J. A Novel Routing Protocol for Underwater Wireless Sensor Network Using Pareto Uninformed and Heuristic Search Techniques. Wireless Pers Commun 121, 1917–1944 (2021). https://doi.org/10.1007/s11277-021-08747-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08747-y

Keywords

Navigation