Skip to main content

Advertisement

Log in

Energy-Aware Healthcare System for Wireless Body Region Networks in IoT Environment Using the Whale Optimization Algorithm

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Smart healthcare systems are important components in an IoT environment that attracted the researchers’ attentions, recently. For such applications the biomedical sensors are placed on patients’ body to gather the condition of the patient through a wireless body region network (WBAN). In a WBAN, energy consumption is one of the crucial issues, in particular in emergency situations. In this paper, a solution is presented using sensor node clustering methods. In the proposed method, body region is divided into three parts, upper, lower, and middle region. An improved LEACH clustering algorithm is performed in each region. After that, an evolutionary algorithm, whale optimization algorithm (WOA), is used to select cluster heads. To evaluate the proposed method, the algorithms are implemented in MATLAB environment and compared with SEP and LEACH-H solutions that are proposed before for the similar solutions. The proposed solution outperformed the other solutions and provide longer lifespan for sensors in a wireless body region network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jiang, D., Wang, F., Lv, Z., Mumtaz, S., Al-Rubaye, S., Tsourdos, A., & Dobre, O. (2021). QoE-aware efficient content distribution scheme for satellite-terrestrial networks. IEEE Transactions on Mobile Computing.

  2. Yu, Z., Amin, S. U., Alhussein, M., & Lv, Z. (2021). Research on disease prediction based on improved DeepFM and IoMT. IEEE Access, 9, 39043–39054.

    Article  Google Scholar 

  3. Wang, D., Zhong, D., & Souri, A. (2021). Energy management solutions in the Internet of Things applications: Technical analysis and new research directions. Cognitive Systems Research, 67, 33–49. https://doi.org/10.1016/j.cogsys.2020.12.009

    Article  Google Scholar 

  4. Zhang, B., Ji, D., Fang, D., Liang, S., Fan, Y., & Chen, X. (2019). A novel 220-GHz GaN diode on-chip tripler with high driven power. IEEE Electron Device Letters, 40(5), 780–783.

    Article  Google Scholar 

  5. Lou, R., Lv, Z., Dang, S., Su, T., & Li, X. (2021). Application of machine learning in ocean data. Multimed Syst. https://doi.org/10.1007/s00530-020-00733-x

    Article  Google Scholar 

  6. Lv, Z., Lou, R., Li, J., Singh, A. K., & Song, H. (2021). Big data analytics for 6G-enabled massive internet of things. IEEE Internet of Things Journal, 8(7), 5350–5359.

    Article  Google Scholar 

  7. Sisi, Z., & Souri, A. (2021). Block chain technology for energy-aware mobile crowd sensing approaches in Internet of Things. Trans Emerg Telecommun Technol. https://doi.org/10.1002/ett.4217

    Article  Google Scholar 

  8. Zhou, M., Li, X., Wang, Y., Li, S., Ding, Y., & Nie, W. (2020). 6G multi-source information fusion based indoor positioning via Gaussian kernel density estimation. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2020.3031639

    Article  Google Scholar 

  9. Hu, J., Zhang, H., Liu, L., Zhu, X., Zhao, C., & Pan, Q. (2020). Convergent multiagent formation control with collision avoidance. IEEE Transactions on Robotics, 36(6), 1805–1818.

    Article  Google Scholar 

  10. Safara, F., et al. (2020). An author gender detection method using whale optimization algorithm and artificial neural network. IEEE Access, 8, 48428–48437. https://doi.org/10.1109/ACCESS.2020.2973509

    Article  Google Scholar 

  11. Weng, L., He, Y., Peng, J., Zheng, J., & Li, X. (2021). Deep cascading network architecture for robust automatic modulation classification. Neurocomputing, 455, 308–324.

    Article  Google Scholar 

  12. Mohsen, S., Zekry, A., Youssef, K., & Abouelatta, M. (2021). On Architecture of self-sustainable wearable sensor node for iot healthcare applications. Wireless Personal Communications, 119, 657–671.

    Article  Google Scholar 

  13. Malekan, Z., Mirabedini, S. J., Zarei, H., & Aboksar, M. A. (2014). Optimizing Energy consumption in sensor networks using ant colony algorithm and fuzzy system. International Journal of Computer Applications, 1(4).

  14. Blum, C. (2005). Ant colony optimization: Introduction and recent trends. Physics of Life Reviews, 2(4), 353–373.

    Article  Google Scholar 

  15. Xiao, N., et al. (2021). A diversity-based selfish node detection algorithm for socially aware networking. J. Signal Process. Syst., 93(7), 811–825.

    Article  Google Scholar 

  16. Cai, X., Shi, K., Zhong, S., Wang, J., & Tang, Y. (2021). Dissipative analysis for high speed train systems via looped-functional and relaxed condition methods. Applied Mathematical Modelling, 96, 570–583.

    Article  MathSciNet  MATH  Google Scholar 

  17. Cai, X., Wang, J., Zhong, S., Shi, K., & Tang, Y. (2021). Fuzzy quantized sampled-data control for extended dissipative analysis of T-S fuzzy system and its application to WPGSs. Journal of the Franklin Institute, 358(2), 1350–1375.

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang, M., Chen, Y., & Susilo, W. (2020). PPO-CPQ: A privacy-preserving optimization of clinical pathway query for e-healthcare systems. IEEE Internet of Things Journal, 7(10), 10660–10672.

    Article  Google Scholar 

  19. Xue, L., Wang, Y., Li, Z., Zhao, J., & Guan, X. (2017). Robust routing design with consideration of lifetime maximization for wireless sensor networks in a framework of anti-risk strategy with the improved constrained particle swarm optimization approach. Wireless Personal Communications, 94(3), 527–558.

    Article  Google Scholar 

  20. Yau, C. W., Kwok, T. T. O., Lei, C. U., & Kwok, Y. K., (2018). “Energy harvesting in internet of things,” Internet of Everything, 35–79.

  21. Mantri, D. S., Prasad, N. R., & Prasad, R. (2016). Mobility and heterogeneity aware cluster-based data aggregation for wireless sensor network. Wireless Personal Communications, 86(2), 975–993.

    Article  Google Scholar 

  22. Patel, R., & Kanawade, S. (2017). Deployment of Data Aggregation Technique in Wireless Sensor Network. In Proceedings of the International Conference on Data Engineering and Communication Technology (pp. 675–680). Singapore: Springer.

  23. Kuo, T.-W., Lin, K.C.-J., & Tsai, M.-J. (2015). On the construction of data aggregation tree with minimum energy cost in wireless sensor networks: NP-completeness and approximation algorithms. IEEE Transactions on Computers, 65(10), 3109–3121.

    Article  MathSciNet  MATH  Google Scholar 

  24. Keshavarznejad, M., Rezvani, M. H., & Adabi, S. (2021). Delay-aware optimization of energy consumption for task offloading in fog environments using metaheuristic algorithms. Cluster Comput.Cluster Computing. https://doi.org/10.1007/s10586-020-03230-y.

  25. Hussain, M., & Jain, U. (2020). Simple and secure device authentication mechanism for smart environments using Internet of things devices. International Journal of Communication Systems, 33(16), e4570. https://doi.org/10.1002/dac.4570

    Article  Google Scholar 

  26. Sharma, R., Mittal, N., & Sohi, B. S. (2020). Flower pollination algorithm-based energy-efficient stable clustering approach for WSNs. International Journal of Communication Systems, 33(7), e4337. https://doi.org/10.1002/dac.4337

    Article  Google Scholar 

  27. Behera, T. M., Samal, U. C., & Mohapatra, S. K. (2018). Energy-efficient modified LEACH protocol for IoT application. IET Wirel. Sens. Syst., 8(5), 223–228.

    Article  Google Scholar 

  28. Al-Baz, A., & El-Sayed, A. (2018). A new algorithm for cluster head selection in LEACH protocol for wireless sensor networks. International Journal of Communication Systems, 31(1), e3407.

    Article  Google Scholar 

  29. Al-Shaikh, A., Khattab, H., & Al-Sharaeh, S. (2018). Performance comparison of LEACH and LEACH-C protocols in wireless sensor networks. J. ICT Res. Appl., 12(3), 219–236.

    Article  Google Scholar 

  30. Shukla, A., & Tripathi, S. (2020). An effective relay node selection technique for energy efficient WSN-Assisted IoT. Wireless Personal Communications, 112(4), 2611–2641. https://doi.org/10.1007/s11277-020-07167-8

    Article  Google Scholar 

  31. Agarwal, V., Tapaswi, S., & Chanak, P. (2021). A survey on path planning techniques for mobile sink in IoT-enabled wireless sensor networks. Wireless Personal Communications. https://doi.org/10.1007/s11277-021-08204-w

    Article  Google Scholar 

  32. Zhou, M., Wang, Y., Liu, Y., & Tian, Z. (2019). An information-theoretic view of WLAN localization error bound in GPS-denied environment. IEEE Transactions on Vehicular Technology, 68(4), 4089–4093.

    Article  Google Scholar 

  33. Hu, J., Zhang, H., Li, Z., Zhao, C., Xu, Z., & Pan, Q. (2020). Object traversing by monocular UAV in outdoor environment. Asian J Control. https://doi.org/10.1002/asjc.2415

    Article  Google Scholar 

  34. Hu, J., Wang, M., Zhao, C., Pan, Q., & Du, C. (2020). Formation control and collision avoidance for multi-UAV systems based on Voronoi partition. Sci. China Technol. Sci., 63(1), 65–72.

    Article  Google Scholar 

  35. Feng, S., et al. (2021). Calibration of fringe projection profilometry: A comparative review. Optics and Lasers in Engineering, 143, 106622.

    Article  Google Scholar 

  36. Feng, S., Zuo, C., Zhang, L., Yin, W., & Chen, Q. (2021). Generalized framework for non-sinusoidal fringe analysis using deep learning. Photonics Res., 9(6), 1084–1098.

    Article  Google Scholar 

  37. Lv, Z., Qiao, L., Li, J., & Song, H. (2020). Deep-learning-enabled security issues in the internet of things. IEEE Internet of Things Journal, 8(12), 9531–9538.

    Article  Google Scholar 

  38. Cai, X., Zhong, S., Wang, J., & Shi, K. (2020). Robust H∞ control for uncertain delayed TS fuzzy systems with stochastic packet dropouts. Applied Mathematics and Computation, 385, 125432.

    Article  MathSciNet  MATH  Google Scholar 

  39. Lv, Z., Chen, D., Lou, R., & Alazab, A. (2021). Artificial intelligence for securing industrial-based cyber–physical systems. Future Generation Computer Systems, 117, 291–298.

    Article  Google Scholar 

  40. M. Zhou, Li, Y., Tahir, M. J., Geng, X., Wang, Y., & He, W. (2021). Integrated statistical test of signal distributions and access point contributions for Wi-Fi indoor localization. IEEE Transactions on Vehicular Technology.

  41. He, Y., Dai, L., & Zhang, H. (2020). Multi-branch deep residual learning for clustering and beamforming in user-centric network. IEEE Communications Letters, 24(10), 2221–2225.

    Article  Google Scholar 

  42. Lv, Z., Qiao, L., & Song, H. (2020). Analysis of the security of internet of multimedia things. ACM Transactions on Multimedia Computing, Communications, and Applications, 16(3s), 1–16.

    Article  Google Scholar 

  43. R. Lou, Wang, W., Li, Y. Zheng, & Z. Lv (2021). Prediction of ocean wave height suitable for ship autopilot. IEEE Transactions on Intelligent Transportation Systems.

  44. Sui, T., Marelli, D., Sun, X., & Fu, M. (2020). Multi-sensor state estimation over lossy channels using coded measurements. Automatica, 111, 108561.

    Article  MathSciNet  MATH  Google Scholar 

  45. Wu, Z., Li, C., Cao, J., & Ge, Y. (2020). On scalability of association-rule-based recommendation: A unified distributed-computing framework. ACM Transactions on the Web, 14(3), 1–21.

    Google Scholar 

  46. Wu, Z., Song, A., Cao, J., Luo, J., & Zhang, L. (2017). Efficiently translating complex SQL query to mapreduce jobflow on cloud. IEEE Trans. Cloud Comput., 8(2), 508–517.

    Article  Google Scholar 

  47. Li, Y., Qiao, L., & Lv, Z. (2021). An optimized byzantine fault tolerance algorithm for consortium blockchain. Peer-to-Peer Netw Appl. https://doi.org/10.1007/s12083-021-01103-8

    Article  Google Scholar 

  48. Tewari, M., & Vaisla, K. S. (2014). “Performance study of SEP and DEC hierarchical clustering algorithm for heterogeneous WSN”, in. International Conference on Computational Intelligence and Communication Networks, 2014, 385–389.

    Google Scholar 

  49. Lv, Z., Chen, D., & Li, J. (2021). Novel system design and implementation for the smart city vertical market. IEEE Communications Magazine, 59(4), 126–131.

    Article  Google Scholar 

Download references

Acknowledgements

Shanxi Province Education Science 13th Five-Year plan topic, application of UHF RFID technology in smart laboratory under the background of “Internet plus”, serial number: HLW-20128. Project No.: 2021-afcec-418 Subject name: Research on innovation and entrepreneurship education mode of Internet of things Engineering Specialty in Shanxi application oriented universities under the background of new engineering. Project No.: 2021-afcec-419 Project Name: Research on the application of SPOC mode MOOC in application oriented Colleges—Taking the Internet of things engineering major as an example. Project No.: 2021-afcec-418.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Xr., Jiang, H. Energy-Aware Healthcare System for Wireless Body Region Networks in IoT Environment Using the Whale Optimization Algorithm. Wireless Pers Commun 126, 2101–2117 (2022). https://doi.org/10.1007/s11277-021-08762-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08762-z

Keywords

Navigation