Skip to main content
Log in

A Deep Learning-Based Intelligent Decision Support System for Hyperspectral Image Classification Using Manifold Batch Structure in Internet of Things (IoT)

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In the modern era of Internet of Things (IoT), deep-learning-based systems are exhibited encouraging performance in hyperspectral image (HSI) classification, because of their capability in extracting key deep features from available images. However, this deep learning centered method typically needs a great amount of training samples in IoT and the main issue with HSI is that labeled samples are not adequate and it can force to overfitting/underfitting issue. Motivated by this, the authors proposed a novel deep learning-based intelligent decision support system, which attains promising accuracies with limited training samples using Manifold Batch Structure (MFBS). Three novel approaches have been proposed to design MFBS. Firstly, a manifold batch scanning approach utilized to conclude the spatial association among the neighboring pixels and, the spectral associations between distinct bands. The proposed manifold batch scanning approach integrates the spatial and spectral association within different batches as well as extracts the collective spatial-spectral information. Secondly, since hyperspectral images have ample of unlabeled pixels, hence we refer such samples in the semi-supervised way while construction of convolution kernels. Finally, the MFBS has developed on a network infrastructure that does not include any hyper parameters for alteration. The experiments results on such standard datasets have revealed that MFBS outperforms various related existing HSI classification framework that too in case related to small training datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chang, C.-I. (2007). Hyperspectral Data Exploitation: Theory and Applications. Wiley.

    Book  Google Scholar 

  2. Donoho, D. L. (2000) High-dimensional data analysis: The curses and blessings of dimensionality. In Proc.AMSMath Challenges Lecture, pp. 1–32.

  3. Gu, Y., Wang, C., You, Di., Zhang, Y., Wang, S., & Zhang, Ye. (2012). Representative multiple kernel learning for classification in hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 50(7), 2852–2865.

    Article  Google Scholar 

  4. Gu, Y., Wang, Q., Wang, H., You, Di., & Zhang, Ye. (2014). Multiple kernel learning via low-rank nonnegative matrix factorization for classification of hyperspectral imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6), 2739–2751.

    Article  Google Scholar 

  5. Gu, Y., Liu, T., Jia, X., Benediktsson, J. A., & Chanussot, J. (2016). Nonlinear multiple kernel learning with multiple-structure-element extended morphological profiles for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 54(6), 3235–3247.

    Article  Google Scholar 

  6. Li, J., Marpu, P. R., Plaza, A., Bioucas-Dias, J. M., & Benediktsson, J. A. (2013). Generalized composite kernel framework for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 51(9), 4816–4829.

    Article  Google Scholar 

  7. Li, J., Huang, X., Gamba, P., Bioucas-Dias, J. M., Zhang, L., Benediktsson, J. A., & Plaza, A. (2014). Multiple feature learning for hyperspectral image classification. IEEE Transactions on Geoscience and Remote sensing, 53(3), 1592–1606.

    Article  Google Scholar 

  8. Benediktsson, J. A., Palmason, J. A., & Sveinsson, J. R. (2005). Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Transactions on Geoscience and Remote Sensing, 43(3), 480–491.

    Article  Google Scholar 

  9. Huang, X., & Zhang, L. (2012). An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery. IEEE transactions on geoscience and remote sensing, 51(1), 257–272.

    Article  Google Scholar 

  10. Zhou, Z.-H. (2012). Ensemble methods: foundations and algorithms. CRC Press.

    Book  Google Scholar 

  11. Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247–259.

    Article  Google Scholar 

  12. Tuia, D., & Camps-Valls, G. (2009). Semisupervised remote sensing image classification with cluster kernels. IEEE Geoscience and Remote Sensing Letters, 6(2), 224–228.

    Article  Google Scholar 

  13. Yang, L., Yang, S., Jin, P., & Zhang, R. (2013). Semi-supervised hyperspectral image classification using spatio-spectral Laplacian support vector machine. IEEE Geoscience and Remote Sensing Letters, 11(3), 651–655.

    Article  Google Scholar 

  14. Wang, Z., Nasrabadi, N. M., & Huang, T. S. (2014). Semisupervised hyperspectral classification using task-driven dictionary learning with Laplacian regularization. IEEE Transactions on Geoscience and Remote Sensing, 53(3), 1161–1173.

    Article  Google Scholar 

  15. Huo, L.-Z., Tang, P., Zhang, Z., & Tuia, D. (2014). Semisupervised classification of remote sensing images with hierarchical spatial similarity. IEEE Geoscience and Remote Sensing Letters, 12(1), 150–154.

    Google Scholar 

  16. Wan, L., Ke, T., Mingzhi, L., Yanfei, Z., & Kai Qin, A. (2014). Collaborative active and semisupervised learning for hyperspectral remote sensing image classification. IEEE Transactions on Geoscience and Remote Sensing, 53(5), 2384–2396.

    Article  Google Scholar 

  17. Romaszewski, M., Głomb, P., & Cholewa, M. (2016). Semi-supervised hyperspectral classification from a small number of training samples using a co-training approach. ISPRS Journal of Photogrammetry and Remote Sensing, 121, 60–76.

    Article  Google Scholar 

  18. Ma, A., Zhong, Y., Zhao, B., Jiao, H., & Zhang, L. (2016). Semisupervised subspace-based DNA encoding and matching classifier for hyperspectral remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 54(8), 4402–4418.

    Article  Google Scholar 

  19. Badshah, A., Ghani, A., Qureshi, M. A., & Shamshirband, S. (2019). Smart security framework for educational institutions using internet of things (IoT). Comput. Mater. Contin, 61, 81–101.

    Google Scholar 

  20. Li, S., Liu, F., Liang, J., Cai, Z., & Liang, Z. (2019). Optimization of face recognition system based on azure IoT edge. CMC-Computers Materials & Continua, 61(3), 1377–1389.

    Article  Google Scholar 

  21. Liu, X., Jing, Yu., Song, W., Zhang, X., Zhao, L., & Wang, A. (2020). Remote sensing image classification algorithm based on texture feature and extreme learning machine. Computers, Materials and Continua, 65(2), 1385–1395.

    Article  Google Scholar 

  22. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25(2), 1097–1105.

    Google Scholar 

  23. Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507.

    Article  MathSciNet  MATH  Google Scholar 

  24. Wu, H., Liu, Qi., & Liu, X. (2019). A review on deep learning approaches to image classification and object segmentation. Computers, Materials & Continua, 60(2), 575–597.

    Article  Google Scholar 

  25. Song, H., Yang, W., Yuan, H., & Bufford, H. (2020). Deep 3D-multiscale DenseNet for hyperspectral image classification based on spatial-spectral information. Intelligent Automation and Soft Computing, 26(6), 1441–1458.

    Article  Google Scholar 

  26. Yun, H.-J., Kim, K.-J., & Chun, J.-C. (2020). Shadow detection and removal from photo-realistic synthetic urban image using deep learning. CMC-Computers Materials & Continua, 62(1), 459–472.

    Article  Google Scholar 

  27. Kim, J., Rim, B., Sung, N.-J., & Hong, M. (2020). Hand classification from fingerprint image using deep neural network. Computers, Materials & Continua, 63(1), 17–30.

    Article  Google Scholar 

  28. Fei, Li., Jiayan, Z., Jiaqi, S., & Szczerbicki, E. (2020). Deep learning-based intrusion system for vehicular ad hoc networks. CMC-Computers Materials & Continua, 65, 653–681.

    Article  Google Scholar 

  29. Gumaei, A., Al-Rakhami, M., AlSalman, H., Mizanur, S. M., & Rahman, and Atif Alamri, . (2020). DL-HAR: deep learning-based human activity recognition framework for edge computing. CMC-Computers Materials and Continua, 65(2), 1033–1057.

    Article  Google Scholar 

  30. Zhang, L., Zhang, L., & Du, B. (2016). Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geoscience Remote Sensing Magazine., 4(2), 22–40.

    Article  Google Scholar 

  31. Chen, Y., Lin, Z., Zhao, X., Wang, G., & Gu, Y. (2014). Deep learning-based classification of hyperspectral data. IEEE Journal of Selected Topics in Applied Earth Observations Remote Sensing, 7(6), 2094–2107.

    Article  Google Scholar 

  32. Zhao, W., Guo, Z., Yue, J., Zhang, X., & Luo, L. (2015). On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery. International Journal of Remote Sensing, 36(13), 3368–3379.

    Article  Google Scholar 

  33. Ma, X., Geng, J., & Wang, H. (2015). Hyperspectral image classification via contextual deep learning. EURASIP Journal of Image Video Processing, 2015(1), 1–12.

    Article  Google Scholar 

  34. Liu, Y., Cao, G., Sun, Q., & Siegel, M. (2015). Hyperspectral classification via deep networks and superpixel segmentation. International Journal of Remote Sensing, 36(13), 3459–3482.

    Article  Google Scholar 

  35. Tao, C., Pan, H., Li, Y., & Zou, Z. (2015). Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification. IEEE Geoscience and Remote Sensing Letters, 12(12), 2438–2442.

    Article  Google Scholar 

  36. Makantasis, K., Karantzalos, K., Doulamis, A., Doulamis, N. (2015) Deep supervised learning for hyperspectral data classification through convolutional neural networks. In Proc. IEEE Int. Geosci. Remote Sens. Symp., pp 2015, 4959–4962.

  37. Hu, W., Huang, Y., Wei, L., Zhang, F., & Li, H. (2015) Deep convolutional neural networks for hyperspectral image classification. Journal of Sensors, vol. 2015, 2015, Art. no. 258619.

  38. H. Liang & Q. Li (2016) Hyperspectral imagery classification using sparse representations of convolutional neural network features. Remote Sensors, vol. 8, no. 2, Art. no. 99.

  39. Romero, A., Gatta, C., & Camps-Valls, G. (2016). Unsupervised deep feature extraction for remote sensing image classification. IEEE Transactions on Geoscience and Remote Sensing, 54(3), 1349–1362.

    Article  Google Scholar 

  40. Chen, Y., Jiang, H., Li, C., Jia, X., & Ghamisi, P. (2016). Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing, 54(10), 6232–6251.

    Article  Google Scholar 

  41. Chan, T. H., Jia, K., Gao, S., Lu, J., Zeng, Z., & Ma, Y. (2015). PCANet: A simple deep learning baseline for image classification? IEEE Transactions on Image Processing, 24(12), 5017–5032.

    Article  MathSciNet  MATH  Google Scholar 

  42. Pan, B., Shi, Z., Zhang, N., & Xie, S. (2016). Hyperspectral image classification based on nonlinear spectral–spatial network. IEEE Geoscience and Remote Sensing Letters, 13(12), 1782–1786.

    Article  Google Scholar 

  43. Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Li, F. F. (2009) ImageNet: A large-scale hierarchical image database. Proceedings of the IEEE conference on computer vision and Pattern Recognition, pp. 248–255.

  44. Xu, G., Ling, R., Deng, L., Qing, Wu., & Ma, W. (2020). Image Interpolation via Gaussian-Sinc Interpolators with Partition of Unity. Computers, Materials and Continua, 62(1), 309–319.

    Article  Google Scholar 

  45. Wu, Lu., Liu, Q., & Lou, P. (2019). Image classification using optimized MKL for sSPM. Intelligent Automation and Soft Computing, 25(2), 249–257.

    Google Scholar 

  46. Kang, X., Li, S., & Benediktsson, J. A. (2013). Spectral–spatial hyperspectral image classification with edge-preserving filtering. IEEE Transactions on Geoscience and Remote Sensing, 52(5), 2666–2677.

    Article  Google Scholar 

  47. Peng, J., Zhou, Y., & Chen, C. L. P. (2015). Region-kernel-based support vector machines for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 53(9), 4810–4824.

    Article  Google Scholar 

  48. Duan, M., Li, K., Li, K., & Tian, Q. (2021). A novel multi-task tensor correlation neural network for facial attribute prediction. ACM Transactions on Intelligent Systems and Technology, 12(1), 3:1-3:22.

    Article  Google Scholar 

  49. Chen, C., Li, K., Teo, S. G., Zou, X., Li, K., & Zeng, Z. (2020). Citywide traffic flow prediction based on multiple gated spatio-temporal convolutional neural networks. ACM Transactions on Knowledge Discovery from Data, 14(4), 42:1-42:23.

    Article  Google Scholar 

  50. Chen, J., Li, K., Kashif Bilal, Xu., Zhou, K. L., & Yu, P. S. (2019). A bi-layered parallel training architecture for large-scale convolutional neural networks. IEEE Transactions on Parallel and Distributed Systems, 30(5), 965–976.

    Article  Google Scholar 

  51. Li, H., Li, K., An, J.-Y., & Li, K. (2018). MSGD: a novel matrix factorization approach for large-scale collaborative filtering recommender systems on GPUs. IEEE Transactions on Parallel and Distributed Systems, 29(7), 1530–1544.

    Article  Google Scholar 

  52. Chen, Y., Zhao, X., & Jia, X. (2015). Spectral–spatial classification of hyperspectral data based on deep belief network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6), 2381–2392.

    Article  Google Scholar 

  53. Chen, C., Li, K., Ouyang, A., & Li, K. (2018). FlinkCL: An OpenCL-based in-memory computing architecture on heterogeneous CPU-GPU clusters for big data. IEEE Transactions on Computers, 67(12), 1765–1779.

    Article  MathSciNet  MATH  Google Scholar 

  54. Duan, M., Li, K., & Li, K. (2018). An Ensemble CNN2ELM for Age Estimation. IEEE Transactions on Information Forensics and Security, 13(3), 758–772.

    Article  Google Scholar 

  55. Chen, Y., Li, K., Yang, W., Xiao, G., Xie, X., & Li, T. (2019). PerformanceAware model for sparse matrix-matrix multiplication on the sunway TaihuLight supercomputer. IEEE Transactions on Parallel and Distributed Systems, 30(4), 923–938.

    Article  Google Scholar 

  56. Liu, C., Li, K., & Li, K. (2021). A game approach to multi-servers load balancing with load-dependent server availability consideration. IEEE Transactions on Cloud Computing, 9(1), 1–13.

    Article  Google Scholar 

  57. Liu, C., Li, K., Li, K., & Buyya, R. (2021). A new service mechanism for profit optimizations of a cloud provider and its users. IEEE Transactions on Cloud Computing, 9(1), 14–26.

    Article  Google Scholar 

  58. Tang, X., Li, K., Zeng, Z., & Veeravalli, B. (2011). A novel security-driven scheduling algorithm for precedence-constrained tasks in heterogeneous distributed systems. IEEE Transactions on Computers, 60(7), 1017–1029.

    Article  MathSciNet  MATH  Google Scholar 

  59. Pan, B., Shi, Z., & Xia, Xu. (2017). R-VCANet: A new deep-learning-based hyperspectral image classification method. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(5), 1975–1986.

    Article  Google Scholar 

  60. Q. Zhang, X. Shen, L.Xu, and J. Jia, “Rolling guidance filter,” in Proc. Eur. Conf. Comput. Vision., Berlin, Germany: Springer, 2014, pp. 815–830.

  61. Nascimento, J. M. P., & Dias, J. M. B. (2005). Vertex component analysis: A fast algorithm to unmix hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 43(4), 898–910.

    Article  Google Scholar 

  62. Kang, X., Li, S., & Benediktsson, J. A. (2014). Feature extraction of hyperspectral images with image fusion and recursive filtering. IEEE Transactions on Geoscience and Remote Sensing, 52(6), 3742–3752.

    Article  Google Scholar 

  63. Kang, X., Li, S., Fang, L., & Benediktsson, J. A. (2014). Intrinsic image decomposition for feature extraction of hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing, 53(4), 2241–2253.

    Article  Google Scholar 

  64. Li, W., & Du, Q. (2014). Gabor-filtering-based nearest regularized subspace for hyperspectral image classification. Topics in Applied Earth Observations and Remote Sensing, 7(4), 1012–1022.

    Article  Google Scholar 

  65. Shen, Y., Zhu, S., Chen, C., Qian, D., Xiao, L., Chen, J., & Pan, D. (2020). Efficient deep learning of nonlocal features for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 7, 6029.

    Google Scholar 

  66. Nejad, M. B., & Shiri, M. E. (2019). A new enhanced learning approach to automatic image classification based on Salp Swarm Algorithm. Computer Systems Science and Engineering, 34(2), 91–100.

    Article  Google Scholar 

  67. Tarabalka, Y., Fauvel, M., Chanussot, J., & Benediktsson, J. A. (2010). SVMand MRF-based method for accurate classification of hyperspectral images. IEEE Geoscience and Remote Sensing Letters, 7(4), 736–740.

    Article  Google Scholar 

Download references

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Sharma.

Ethics declarations

Conflicts of interest

The authors do not have any conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Biswas, M. A Deep Learning-Based Intelligent Decision Support System for Hyperspectral Image Classification Using Manifold Batch Structure in Internet of Things (IoT). Wireless Pers Commun 126, 2119–2147 (2022). https://doi.org/10.1007/s11277-021-08763-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08763-y

Keywords

Navigation