Skip to main content

Advertisement

Log in

Energy-Effective and Secure Data Transfer Scheme for Mobile Nodes in Smart City Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Mobile nodes are deployed at different locations in the smart city to collect meaningful information so captured data can be used as an input in different smart city applications for society benefits. However, data is transferred through a public communication channel and thus, it is important to achieve specific security level to protect from malicious users in the network. There are various data transmission methods for mobile environments, but they are vulnerable against fundamental security attacks and the performance results are not effective for the mobile ad-hoc network. In this paper, we identify some security issues in Islam et al.’s scheme. To address found issues and improve the security and efficiency, we propose an energy-efficient and secure communication scheme for mobile node applications, achieving user identity privacy. We do security evaluations of the proposed protocol to confirm its strengths against various attacks. Further, we discuss performance analysis (for execution cost, energy consumption, communication overhead, and storage cost) for the suggested data transmission method and then, do the comparison with other relevant communication mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Junhai, L., Danxia, Y., Liu, X., & Mingyu, F. (2009). A survey of multicast routing protocols for mobile ad-hoc networks”. IEEE Communications Surveys & Tutorials, 11(1), 78–91.

    Article  Google Scholar 

  2. Mian, A. N., Baldoni, R., & Beraldi, R. (2009). A survey of service discovery protocols in multihop mobile ad hoc networks. IEEE Pervasive Computing, 8(1), 66–74.

    Article  Google Scholar 

  3. Tarique, M., Tepe, K. E., Adibi, S., & Erfani, S. (2009). Survey of multipath routing protocols for mobile ad hoc networks. Journal of Network and Computer Applications, 32(6), 1125–1143.

    Article  Google Scholar 

  4. Kiess, W., & Mauve, M. (2007). A survey on real-world implementations of mobile ad-hoc networks. Ad Hoc Networks, 5(3), 324–339.

    Article  Google Scholar 

  5. Hartenstein, H., & Laberteaux, L. P. (2008). A tutorial survey on vehicular ad hoc networks. IEEE Communications magazine, 46(6), 164–171.

    Article  Google Scholar 

  6. Ray, P. P. (2018). A survey on Internet of Things architectures. Journal of King Saud University-Computer and Information Sciences, 30(3), 291–319.

    Article  Google Scholar 

  7. Kannhavong, B., Nakayama, H., Nemoto, Y., Kato, N., & Jamalipour, A. (2007). A survey of routing attacks in mobile ad hoc networks. IEEE Wireless communications, 14(5), 85–91.

    Article  Google Scholar 

  8. Cho, J. H., Swami, A., & Chen, R. (2011). A survey on trust management for mobile ad hoc networks. IEEE communications surveys & tutorials, 13(4), 562–583.

    Article  Google Scholar 

  9. B. Wu, J. Chen, J. Wu, and M. Cardei, “A survey of attacks and countermeasures in mobile ad hoc networks,” In Wireless network security (pp. 103–135). Springer, Boston, MA.

  10. R. H. Jhaveri, S. J. Patel, and D. C. Jinwala, “DoS attacks in mobile ad hoc networks: A survey,” In 2012 second international conference on advanced computing & communication technologies (pp. 535–541). IEEE.

  11. Nadeem, A., & Howarth, M. P. (2013). A survey of MANET intrusion detection & prevention approaches for network layer attacks. IEEE communications surveys & tutorials, 15(4), 2027–2045.

    Article  Google Scholar 

  12. Eissa, T., Razak, S. A., & Ngadi, M. D. (2011). Towards providing a new lightweight authentication and encryption scheme for MANET. Wireless Networks, 17(4), 833–842.

    Article  Google Scholar 

  13. Eissa, T., Razak, S. A., & Ngadi, M. A. (2012). A novel lightweight authentication scheme for mobile ad hoc networks. Arabian Journal for Science and Engineering, 37(8), 2179–2192.

    Article  Google Scholar 

  14. Yan, Z., Feng, W., & Wang, P. (2015). Anonymous authentication for trustworthy pervasive social networking. IEEE Transactions on Computational Social Systems, 2(3), 88–98.

    Article  Google Scholar 

  15. Alomari, A. (2015). Mutual authentication and updating the authentication key in manets. Wireless Personal Communications, 81(3), 1031–1043.

    Article  Google Scholar 

  16. Shanthi, K., & Murugan, D. (2016). Pair-wise key agreement and hop-by-hop authentication protocol for MANET. Wireless Networks, 23(4), 1025–1033.

    Article  Google Scholar 

  17. Islam, S. H., Amin, R., Biswas, G. P., Farash, M. S., Li, X., & Kumari, S. (2017). An improved three party authenticated key exchange protocol using hash function and elliptic curve cryptography for mobile-commerce environments. Journal of King Saud University-Computer and Information Sciences, 29(3), 311–324.

    Article  Google Scholar 

  18. Yan, Z., Wang, P., & Feng, W. (2018). A novel scheme of anonymous authentication on trust in Pervasive Social Networking. Information Sciences, 445, 79–96.

    Article  MathSciNet  MATH  Google Scholar 

  19. Brindha, S. V., Karthikeyan, T., & Manimegalai, P. (2018). Fuzzy enhanced secure multicast routing for improving authentication in MANET. Cluster Computing, 22(4), 9615–9623.

    Google Scholar 

  20. Mo, J., & Chen, H. (2019). A lightweight secure user authentication and key agreement protocol for wireless sensor networks. Security and Communication Networks, 1–17.

  21. Mandal, S., Mohanty, S., & Majhi, B. (2020). CL-AGKA: Certificateless authenticated group key agreement protocol for mobile networks. Wireless Networks, 26, 3011–3031.

    Article  Google Scholar 

  22. Messerges, T. S., Dabbish, E. A., & Sloan, R. H. (2002). Examining smart-card security under the threat of power analysis attacks. IEEE Transactions on Computers, 51(5), 541–552.

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin, X., & Li, X. (2013). Achieving efficient cooperative message authentication in vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 62(7), 3339–3348.

    Article  Google Scholar 

  24. Liu, Y., Wang, L., & Chen, H. H. (2015). Message authentication using proxy vehicles in vehicular ad hoc networks. IEEE transactions on Vehicular Technology, 64(8), 3697–3710.

    Article  Google Scholar 

  25. T Limbasiya, M Soni, SK Mishra, "Advanced formal authentication protocol using smart cards for network applicants", Computers & Electrical Engineering, Vol. 66, 2018, pp 50–63. ISSN 0045-7906.

  26. D. Zelle, C. Kraub, H. StrauB, and K. Schmidt, “On using TLS to secure in-vehicle networks,” In Proceedings of the 12th International Conference on Availability, Reliability and Security (pp. 1–10). ACM.

  27. Limbasiya, T., & Das, D. (2019). Identity based proficient message verification scheme for vehicle users. Pervasive and Mobile Computing, 60, 101083.

    Article  Google Scholar 

  28. Soni, M., & Singh, D. K. (2021). Privacy Preserving Authentication and Key management protocol for health information System. Data Protection and Privacy in Healthcare: Research and Innovations (p. 37). CRC Publication.

    Google Scholar 

  29. Soni M., Patel T., Jain A. (2020) Security Analysis on Remote User Authentication Methods. In: Pandian A., Senjyu T., Islam S., Wang H. (eds) Proceeding of the International Conference on Computer Networks, Big Data and IoT (ICCBI - 2018). ICCBI 2018. Lecture Notes on Data Engineering and Communications Technologies, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-030-24643-3_60

  30. M. Soni and A. Jain, Secure Communication and Implementation Technique for Sybil Attack in Vehicular Ad-Hoc Networks. In: 2018 Second International Conference on Computing Methodologies and Communication (ICCMC), Erode, 2018, pp. 539–543. https://doi.org/10.1109/ICCMC.2018.8487887.

  31. Soni, M., Barot, Y., & Gomathi, S. (2020). A review on privacy-preserving data preprocessing. Journal of Cybersecurity and Information Management, 4(2), 16–30.

    Article  Google Scholar 

  32. Soni, M., Rajput, B. S., Patel, T., & Parmar, N. (2021). Lightweight Vehicle-to-Infrastructure Message Verification Method for VANET. In K. Kotecha, V. Piuri, H. Shah, & R. Patel (Eds.), Data Science and Intelligent Applications. Lecture Notes on Data Engineering and Communications Technologies. (Vol. 52). Singapore: Springer. https://doi.org/10.1007/978-981-15-4474-3_50

    Chapter  Google Scholar 

  33. Chaudhary, U., Patel, A., Patel, A., & Soni, M. (2021). Survey Paper on Automatic Vehicle Accident Detection and Rescue System. In K. Kotecha, V. Piuri, H. Shah, & R. Patel (Eds.), Data Science and Intelligent Applications. Lecture Notes on Data Engineering and Communications Technologies. (Vol. 52). Singapore: Springer. https://doi.org/10.1007/978-981-15-4474-3_35

    Chapter  Google Scholar 

  34. M. Soni and D. Kumar, "Wavelet Based Digital Watermarking Scheme for Medical Images," 2020 In: 12th International Conference on Computational Intelligence and Communication Networks (CICN), Bhimtal, India, 2020, pp. 403–407. https://doi.org/10.1109/CICN49253.2020.9242626.

  35. Soni, M., & Rajput, B. S. (2021). Security and Performance Evaluations of QUIC Protocol. In K. Kotecha, V. Piuri, H. Shah, & R. Patel (Eds.), Data Science and Intelligent Applications. Lecture Notes on Data Engineering and Communications Technologies. (Vol. 52). Singapore: Springer. https://doi.org/10.1007/978-981-15-4474-3_5

    Chapter  Google Scholar 

  36. Dhiman, G., & Kumar, V. (2017). Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications. Advances in Engineering Software, 114, 48–70.

    Article  Google Scholar 

  37. Dhiman, G., & Kumar, V. (2018). Emperor penguin optimizer: A bio-inspired algorithm for engineering problems. Knowledge-Based Systems, 159, 20–50.

    Article  Google Scholar 

  38. Dhiman, G., & Kumar, V. (2018). Multi-objective spotted hyena optimizer: A multi-objective optimization algorithm for engineering problems. Knowledge-Based Systems, 150, 175–197.

    Article  Google Scholar 

  39. Dhiman, G., & Kumar, V. (2019). Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowledge-Based Systems, 165, 169–196.

    Article  Google Scholar 

  40. Kaur, S., Awasthi, L. K., Sangal, A. L., & Dhiman, G. (2020). Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Engineering Applications of Artificial Intelligence, 90, 103541.

    Article  Google Scholar 

  41. Dhiman, G., & Kaur, A. (2019). STOA: A bio-inspired based optimization algorithm for industrial engineering problems. Engineering Applications of Artificial Intelligence, 82, 148–174.

    Article  Google Scholar 

  42. Dhiman, G. (2019). ESA: a hybrid bio-inspired metaheuristic optimization approach for engineering problems. Engineering with Computers, 1–31.

  43. Dhiman, G., Garg, M., Nagar, A., Kumar, V., & Dehghani, M. (2020). A novel algorithm for global optimization: Rat swarm optimizer. Journal of Ambient Intelligence and Humanized Computing, 1–26.

  44. Dhiman, G., & Garg, M. (2020). MoSSE: A novel hybrid multi-objective meta-heuristic algorithm for engineering design problems. Soft Computing, 24(24), 18379–18398.

    Article  Google Scholar 

  45. Kaur, H., Rai, A., Bhatia, S. S., & Dhiman, G. (2020). MOEPO: A novel Multi-objective Emperor Penguin Optimizer for global optimization: Special application in ranking of cloud service providers. Engineering Applications of Artificial Intelligence, 96, 104008.

    Article  Google Scholar 

  46. Dhiman, G., Oliva, D., Kaur, A., Singh, K. K., Vimal, S., Sharma, A., & Cengiz, K. (2021). BEPO: A novel binary emperor penguin optimizer for automatic feature selection. Knowledge-Based Systems, 211, 106560.

    Article  Google Scholar 

  47. Kaur, M., Kaur, R., Singh, N., & Dhiman, G. (2021). SChoA: a newly fusion of sine and cosine with chimp optimization algorithm for HLS of datapaths in digital filters and engineering applications. Engineering with Computers, 1–29.

  48. Dehghani, M., Montazeri, Z., Ali Dehghani, O. P., Malik, R. M. M., Dhiman, G., Nouri, N., Ehsanifar, A., Guerrero, J. M., & Ramirez-Mendoza, R. A. (2021). Binary Spring Search Algorithm for Solving Various Optimization Problems.". Applied Sciences, 11(3), 1286.

    Article  Google Scholar 

  49. Garg, M., A., Kaur, and G., Dhiman. "A Novel Resource Allocation and Scheduling Based on Priority Using Metaheuristic for Cloud Computing Environment." In Impacts and Challenges of Cloud Business Intelligence, pp. 113–134. IGI Global, 2021.

  50. Kaur, A., Dhiman, G., & Garg, M. (2021). Task Scheduling in Cloud Computing Using Spotted Hyena Optimizer. In S. Aljawarneh & M. Malhotra (Eds.), Impacts and Challenges of Cloud Business Intelligence, pp. 136–149. IGI Global.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Dhiman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soni, M., Dhiman, G., Rajput, B.S. et al. Energy-Effective and Secure Data Transfer Scheme for Mobile Nodes in Smart City Applications. Wireless Pers Commun 127, 2041–2061 (2022). https://doi.org/10.1007/s11277-021-08767-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08767-8

Keywords

Navigation