Skip to main content
Log in

MMSE Filter Design for Multi-source and Multi-destination MIMO Amplify-and-Forward Relay Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Multiple antenna source, relay, and destination filter sets are developed that minimize the sum mean-squared error (MSE). Motivated by the equivalence of the transmit-centric sum MSE and the receive-centric sum MSE of multiple-source and multiple-destination amplify-and-forward relaying systems, we formulate the sum MSE minimization problem using the transmit-centric MSEs. Next, using Karush–Kuhn–Tucker conditions, analytical filters are derived and an alternating algorithm that calculates the optimum solutions is presented. The simulation results and analysis verify that, compared with the conventional method that provides gradient-based numerical solutions, the proposed scheme suffers a marginal loss in performance while exhibiting significantly improved implementation efficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. A collection of spatially separated relay nodes connected together.

  2. The sum power of all RF-chains in each node is constrained.

  3. Conceptually, this is the leakage interference from a specific transmit node to all the receive nodes in which these signals interfere with the desired signal.

  4. These values are selected from intensive simulation results.

  5. Here we use the secant method, which does not require derivatives [23].

References

  1. Wang, B., Zhang, J., & Host-Madsen, A. (2005). On the capacity of MIMO relay channels. IEEE Transactions on Information Theory, 51, 29–43.

    Article  MathSciNet  Google Scholar 

  2. Tang, X., & Hua, Y. (2007). Optimal designs of non-regenerative MIMO wireless relays. IEEE Transactions on Wireless Communications, 6, 1398–1407.

    Article  Google Scholar 

  3. Sanguinetti, L., D’Amico, A. A., & Rong, Y. (2012). A tutorial on the optimization of amplify-and-forward MIMO relay systems. IEEE Journal on Selected Areas in Communication,30, 1331–1346.

  4. Phan, A. H., Tuan, H. D., Kha, H. H., & Nguyen, Ha. H. (2012). Beamforming optimization in multi-user amplify-and-forward wireless relay networks. IEEE Transactions on Wireless Communications, 11, 1510–1520.

    Article  Google Scholar 

  5. Cheng, Y., & Pesavento, M. (2012). Joint optimization of source power allocation and distributed relay beamforming in multiuser peer-to-peer relay networks. IEEE Transactions on Signal Processing, 60, 2962–2973.

    Article  MathSciNet  Google Scholar 

  6. Liu, Y., & Petropulu, A. P. (2011). On the sumrate of amplify-and-forward relay networks with multiple source-destination pairs. IEEE Transactions on Wireless Communications, 10, 3732–3742.

    Article  Google Scholar 

  7. Fadel, M., El-Keyi, A., & Sultan, A. (2012). QoS-constrained multiuser peer-to-peer amplify-and-forward relay beamforming. IEEE Transactions on Signal Processing, 60, 1397–1408.

    Article  MathSciNet  Google Scholar 

  8. Zarifi, K., Ghrayeb, A., & Affes, S. (2011). Jointly optimal source power control and relay matrix design in multipoint-to-multipoint cooperative communication networks. IEEE Transactions on Signal Processing, 59, 4313–4330.

    Article  MathSciNet  Google Scholar 

  9. Suraweera, H., Ngo, H., Duong, T., Yuen, C., & Larsson, E. (2013). Multi-pair amplify and forward relaying with very large antenna arrays. In IEEE int. conf. communications (ICC), Budapest, Hungary (2013)

  10. Kim, J., Hwang, J., Lee, K. J., & Lee, I. (2011). Blockwise amplify-and-forward relaying strategies for multipoint-to-multipoint MIMO networks. IEEE Transactions on Wireless Communications, 7, 2028–2033.

    Article  Google Scholar 

  11. Truong, K. T., Sartori, P., & Heath, R. W. (2013). Cooperative algorithms for MIMO amplify-and-forward relay networks. IEEE Transactions on Signal Processing, 61, 1272–1287.

    Article  MathSciNet  Google Scholar 

  12. Choi, H., Song, C., Park, H., & Lee, I. (2014). Transceiver designs for multipoint-to-multipoint MIMO amplify-and-forward relaying systems. IEEE Transactions on Wireless Communications, 13, 198–209.

    Article  Google Scholar 

  13. Nguyen, K. X., Rong, Y., & Nordholm, S. (2015). MMSE-based transceiver design algorithms for interference MIMO relay systems. IEEE Transactions on Wireless Communications, 14, 6414–6424.

    Article  Google Scholar 

  14. Wang, C., Wang, H., Ng, D. W., Xia, X., & Liu, C. (2015). Joint beamforming and power allocation for secrecy in peer-to-peer relay networks. IEEE Transactions on Wireless Communications, 14, 3280–3293.

    Article  Google Scholar 

  15. Zhang, X., Guo, D., & Guo, K. (2018). Secure performance analysis for multi-pair AF relaying massive MIMO systems in Ricean channels. IEEE Access, 6, 57708–57720.

    Article  Google Scholar 

  16. Nguyen, K., Vu, Quang-Doanh., Tran, L., & Juntti, M. (2019). Energy efficiency fairness for multi-pair wireless-powered relaying systems. IEEE Journal of Selected Areas in Communications, 37, 357–373.

    Article  Google Scholar 

  17. Zhang, X., Guo, D., An, K., Liang, X., & Ma, W. (2019). Secure transmission in multi-pair AF relaying massive MIMO networks against active pilot spoofing attacks. IEEE Access, 7, 3547–3560.

    Article  Google Scholar 

  18. Shin, J. (2020). Min-SINR-maximizing wireless-powered AF relay for multisource and multidestination networks. Wireless Personal Communications, 3, 1785–1793.

    Google Scholar 

  19. Shin, J. (2020). Per-antenna power constrained transceiver design for MIMO multisource and multidestination amplify-and-forward relay systems. Wireless Personal Communications, 3, 1503–1515.

    Article  Google Scholar 

  20. Sun, F., & Carvalho, E. (2012). A leakage-based MMSE beamforming design for a MIMO interference channel. IEEE Signal Processing Letters, 19, 368–371.

    Article  Google Scholar 

  21. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  22. Chong, E., & Zak, S. (2001). An introduction to optimization. New York: Wiley.

    MATH  Google Scholar 

  23. Allen, M. B., & Isaacson, E. L. (1998). Numerical analysis for applied science. New York: Wiley.

    MATH  Google Scholar 

  24. Golub, G. H., & Van Loan, C. F. (1996). Matrix computations. Baltimore: Johns Hopkins.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joonwoo Shin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Korea Maritime and Ocean University Research Fund.

Appendix

Appendix

1.1 Derivation of the Source-Node Transmit Filter (15)

By setting the derivative of Lagrangian function (14) to zero, \({\partial {\mathcal {L}}}/{\partial {\tilde{\mathbf{A}}}_k^{*}}=0\), we can obtain

$$\begin{aligned} {\tilde{\mathbf{A}}}_k = \Big {(} \sum _{i}^{K} {\mathbf{H}}_k^{H} {\mathbf{B}}^{H} {\mathbf{G}}_i^{H} {\mathbf{D}}_i^{H} {\mathbf{D}}_i {\mathbf{G}}_i {\mathbf{B}} {\mathbf{H}}_{k} +\psi _k {\mathbf{I}}_{N_s} + \xi _k {\mathbf{H}}_k^{H} {\mathbf{B}}^{H} {\mathbf{B}} {\mathbf{H}}_{k} \Big {)}^{-1} {\mathbf{H}}_k^{H} {\mathbf{B}}^{H} {\mathbf{G}}_k^{H} {\mathbf{D}}_k^{H}, \end{aligned}$$
(23)

where \(\psi _k=\lambda _k \alpha _k^2\) and \(\xi _k=\lambda _r\alpha _k^2\) are the modified Lagrange multipliers for the power constraint of \(\textsf {S}_k\) and that of \(\textsf {R}\), respectively. From \({\partial {\mathcal {L}}}/{\partial \alpha _k}=0\) and \({\partial {\mathcal {L}}}/{\partial \lambda _r}=0\), we can obtain two equations as follows:

$$\begin{aligned} \psi _k = \frac{1}{P_k}\Big {(}\sigma _{n_r}^2 {\text{Tr}}\left( {\mathbf{D}}_k {\mathbf{G}}_k {\mathbf{B}} {\mathbf{B}}^{H} {\mathbf{G}}_k^{H} {\mathbf{D}}_k^{H} \right) + \sigma _{n_k}^2 {\text{Tr}}\left( {\mathbf{D}}_k {\mathbf{D}}_k ^H \right) - \xi _k\alpha _k^2 {\text{Tr}}\left( {\mathbf{B}} {\mathbf{H}}_{k} {\tilde{\mathbf{A}}}_{k} {\tilde{\mathbf{A}}}_{k}^{H} {\mathbf{H}}_k^{H} {\mathbf{B}}^{H} \right) \Big {)} \end{aligned}$$
(24)

and

$$\begin{aligned} \alpha _k^2 {\text{Tr}}\Big {(} {\mathbf{B}} {\mathbf{H}}_{k} {\tilde{\mathbf{A}}}_{k} {\tilde{\mathbf{A}}}_{k}^{H} {\mathbf{H}}_k^{H} {\mathbf{B}}^{H}\Big {)} =&P_r - {\text{Tr}} \Big {(} {\mathbf{B}} \left( \sum _{i\ne k}^{K} \alpha _i^2{\mathbf{H}}_i {\tilde{\mathbf{A}}}_i {\tilde{\mathbf{A}}}_i^{H} {\mathbf{H}}_i^{H} +\sigma _{n_r}^{2} {\mathbf{I}}_{N_s} \right) {\mathbf{B}}^H \Big {)} . \end{aligned}$$
(25)

By substituting (25) into (24) to eliminate the parameters of \(\textsf {S}_{k}\), the modified Lagrange multiplier for the \(\textsf {S}_k\) (24) can be rewritten as

$$\begin{aligned} \psi _k =&\,\frac{1}{P_k} \Big {(} \sigma _{n_r}^2 {\text{Tr}} ( {\mathbf{D}}_k {\mathbf{G}}_k {\mathbf{B}} {\mathbf{B}}^{H} {\mathbf{G}}_k^{H} {\mathbf{D}}_k^{H}) + \sigma _{n_k}^2 {\text{Tr}}({\mathbf{D}}_k {\mathbf{D}}_k^H ) \nonumber \\&- \xi _k \big {(} P_r - {\text{Tr}} \big {(} {\mathbf{B}} (\sum _{i\ne k}^{K} \alpha _i^2 {\mathbf{H}}_i {\tilde{\mathbf{A}}}_i {\tilde{\mathbf{A}}}_i^{H} {\mathbf{H}}_i^{H} + \sigma _{n_r}^{2} {\mathbf{I}}_{N_s} ) {\mathbf{B}}^H \big {)} \Big {)}. \end{aligned}$$
(26)

By substituting (26) in (23), the transmit filter of \(\textsf {S}_k\) (15) can be obtained. Lastly, by incorporating \(\alpha _k^2 = P_k/{\text{Tr}}({\tilde{\mathbf{A}}}_k {\tilde{\mathbf{A}}}_k^H )\) and (25), the composite power constraint of (16) that satisfies both \(\textsf {S}_k\) and \(\textsf {R}\) power constraints can be derived.

1.2 Derivation of the Relay Filter (21)

Setting the derivatives of Lagrangian function (20) to zero, we can find

$$\begin{aligned} {\tilde{\mathbf{B}}}= \Big {(}\sum _{k=1}^{K} {\mathbf{G}}_{k}^{H}{\mathbf{D}}_{k}^{H}{\mathbf{D}}_{k}{\mathbf{G}}_{k} + \mu \gamma ^2{\mathbf{I}}\Big {)}^{-1} \Big {(}\sum _{k=1}^{K} {\mathbf{G}}_{k}^H{\mathbf{D}}_{k}^H{\mathbf{A}}_{k}^H{\mathbf{H}}_{k}^H\Big {)} \Big {(}\sum _{k=1}^{K} {\mathbf{H}}_{k}{\mathbf{A}}_{k}{\mathbf{A}}_{k}^H{\mathbf{H}}_{k}^H +\sigma _{n_r}^2{\mathbf{I}}\Big {)}^{-1} . \end{aligned}$$
(27)

In addition, from \({\partial {\mathcal {L}}}/{\partial {{\gamma }}}=0\) and \({\partial {\mathcal {L}}}/{\partial {{\mu }}}=0\), i.e.,

$$\begin{aligned} {\partial {\mathcal {L}}}/{\partial {{\gamma }}}= -2\gamma ^{-3} \sum _{k=1}^{K} \sigma _{n_k}^2 {\text{Tr}} ({\mathbf{D}}_{k} {\mathbf{D}}_{k}^{H}) + 2\mu \gamma {\text{Tr}}\big ( {\tilde{\mathbf{B}}}( \sum _{k=1}^H {\mathbf{H}}_k{\mathbf{A}}_k {\mathbf{A}}_k^H {\mathbf{H}}_k^H + \sigma _{n_r}^2 {\mathbf{I}}_{N_r} {\tilde{\mathbf{B}}}^{H} \big ) =0 \end{aligned}$$
(28)

and

$$\begin{aligned} {\partial {\mathcal {L}}}/{\partial {{\mu }}}=\gamma ^2 {\text{Tr}}\big ( {\tilde{\mathbf{B}}} ( \sum _{k=1}^H {\mathbf{H}}_k{\mathbf{A}}_k {\mathbf{A}}_k^H {\mathbf{H}}_k^H + \sigma _{n_r}^2 {\mathbf{I}}_{N_r}{\tilde{\mathbf{B}}}^{H} \big ) - P_r = 0 . \end{aligned}$$
(29)

we can obtain

$$\begin{aligned} \mu \gamma ^2 =\frac{\sum _{k=1}^{K} \sigma _{n_k}^2 {\text{Tr}}({\mathbf{D}}_k{\mathbf{D}}_k^H)}{P_r}. \end{aligned}$$
(30)

By substituting (30) into (27), the relay filter \({\tilde{\mathbf{B}}}\) in (21) can be derived. Note that the condition (22) for the scaling parameter \(\gamma\) can be found by using (29).

1.3 Proof of Algorithm 1

If we denote \({\mathbf{SMSE}} ^{\text {MOD}}(\lbrace {\mathbf{A}}_k^{(l)}\rbrace , {\mathbf{B}}^{(l)} ,\lbrace {\mathbf{D}}_k^{(l)}\rbrace )\) as the modified sum MSE function with the lth alternation transmit filter \(\lbrace {\mathbf{A}}_k^{(l)}\rbrace\), relay filter \({\mathbf{B}}^{(l)}\), and receive filter \(\lbrace {\mathbf{D}}_k^{(l)}\rbrace\), then

$$\begin{aligned} {\mathbf{SMSE}} ^{\text {MOD}}(\lbrace {\mathbf{A}}_k^{(l+1)}\rbrace , {\mathbf{B}}^{(l+1)} ,\lbrace {\mathbf{D}}_k^{(l+1)}\rbrace )&\le {\mathbf{SMSE}} ^{\text {MOD}}(\lbrace {\mathbf{A}}_k^{(l+1)}\rbrace , {\mathbf{B}}^{(l+1)} ,\lbrace {\mathbf{D}}_k^{(l)}\rbrace ) \\&\le {\mathbf{SMSE}} ^{\text {MOD}}(\lbrace {\mathbf{A}}_k^{(l+1)}\rbrace , {\mathbf{B}}^{(l)} ,\lbrace {\mathbf{D}}_k^{(l)}\rbrace ) \\&\le {\mathbf{SMSE}} ^{\text {MOD}}(\lbrace {\mathbf{A}}_k^{(l)}\rbrace , {\mathbf{B}}^{(l)} ,\lbrace {\mathbf{D}}_k^{(l)}\rbrace ) \end{aligned}$$

and the modified sum MSE is lower bound. Therefore Algorithm 1 is guaranteed to converge as \(l\rightarrow \infty\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, J. MMSE Filter Design for Multi-source and Multi-destination MIMO Amplify-and-Forward Relay Systems. Wireless Pers Commun 121, 2057–2072 (2021). https://doi.org/10.1007/s11277-021-08809-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08809-1

Keywords

Navigation