Skip to main content

Advertisement

Log in

Performance Analysis of Parallel Concatenation of LDPC Coded SISO-GFDM System for Distinctive Pulse Shaping Filters using USRP 2901 Device and its Application to WiMAX

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The increasing demand for high data rates requires channel error control codes for the upcoming fifth generation. This article presents an investigation of the parallel concatenation of low-density parity-check codes (PC-LDPC) in the fifth generation proposed waveform candidate called generalized frequency division multiplexing (GFDM). PC-LDPC codes are obtained by dividing the long and high complexity single LDPC codes into small two lower complexity codes, and these designed codes are applied to the 5G-GFDM waveform. Since the GFDM signal transmits data in both the time and frequency domain, these PC-LDPC codes can deal with two-dimensional errors. This channel coded GFDM system is integrated into Universal software radio peripheral (USRP) device for real-time implementation. The Attainment of the proposed transceiver is verified by computation of BER under distinctive channel coding techniques like convolutional, Golay, Bose-Chaudhuri-Hochquenghem (BCH), extended length single LDPC code. The different pulse shaping filters such as Raised Cosine (RC), Root Raised Cosine (RRC), Gaussian, and Xia 4th order filter are applied to the GFDM under the Gaussian noise and Rayleigh fading channel to compute Out of band (OOB) power. The PC-LDPC coded GFDM outperforms LDPC by 6.5 dB in the RRC filter for roll-off factor rate 0.5 under the Rayleigh fading channel. PC-LDPC code outperforms LDPC code with a coding gain of 2 dB was observed in IEEE 802.16 Transceiver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Data Availability

The data availability is already explained in this article in the results and discussion section.

Code Availability

The authors are ready to share the custom code used to generate the output for the system if needed.

References

  1. Michailow, N., Matthé, M., Gaspar, I. S., Caldevilla, A. N., Mendes, L. L., Festag, A., & Fettweis, G. (2014). Generalized frequency division multiplexing for 5th generation cellular networks. IEEE Transactions on Communications, 62(9), 3045–3061.

    Article  Google Scholar 

  2. Michailow, N., Datta, R., Krone, S., Lentmaier, M., & Fettweis, G. (2012, March). Generalized frequency division multiplexing: A flexible multi-carrier modulation scheme for 5th generation cellular networks. In Proceedings of the German microwave conference (GeMiC’12) (Vol. 62, pp. 1–4).

  3. Michailow, N., Gaspar, I., Krone, S., Lentmaier, M., & Fettweis, G. (2012). Generalized frequency division multiplexing: Analysis of an alternative multi-carrier technique for next generation cellular systems. In 2012 International Symposium on Wireless Communication Systems (ISWCS) (pp. 171–175). IEEE.

  4. Gaspar, D., Mendes, L., & Pimenta, T. (2017). GFDM BER under synchronization errors. IEEE Communications Letters, 21(8), 1743–1746.

    Article  Google Scholar 

  5. Chung, S. Y., Forney, G. D., Richardson, T. J., & Urbanke, R. (2001). On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit. IEEE Communications letters, 5(2), 58–60.

    Article  Google Scholar 

  6. Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal, 27(3), 379–423.

    Article  MathSciNet  Google Scholar 

  7. Kudekar, S., Richardson, T. J., & Urbanke, R. L. (2011). Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so well over the BEC. IEEE Transactions on Information Theory, 57(2), 803–834.

    Article  MathSciNet  Google Scholar 

  8. Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE mobile computing and communications review, 5(1), 3–55.

    Article  MathSciNet  Google Scholar 

  9. Adachi, F., & Ohno, K. (1991). BER performance of QDPSK with postdetection diversity reception in mobile radio channels. IEEE Transactions on Vehicular Technology, 40(1), 237–249.

    Article  Google Scholar 

  10. Naoues, M., Noguet, D., Alaus, L., & Louët, Y. (2011). A common operator for FFT and FEC decoding. Microprocessors and Microsystems, 35(8), 708–715.

    Article  Google Scholar 

  11. Zhao, J., Zhao, M., Yang, H., Chen, J., Chen, X., & Wang, J. (2011, April). High performance LDPC decoder on CELL BE for WiMAX system. In 2011 Third International Conference on Communications and Mobile Computing (pp. 278–281). IEEE.

  12. Gagan, H. M. R. K. N., Manas, R., & Kumar, N. G. (2017). Performance evaluation of OFDM coding system using concatenated BCH and LDPC codes. International Journal of Communications, Network and System Sciences, 10(5), 67–77.

    Article  Google Scholar 

  13. Na, Z., Pan, Z., Xiong, M., Liu, X., Lu, W., Wang, Y., & Fan, L. (2018). Turbo receiver channel estimation for GFDM-based cognitive radio networks. IEEE Access, 6, 9926–9935.

    Article  Google Scholar 

  14. Mostari, L., & Taleb-Ahmed, A. (2018). High performance short-block binary regular LDPC codes. Alexandria engineering journal, 57(4), 2633–2639.

    Article  Google Scholar 

  15. Matthé, M., Michailow, N., Gaspar, I., & Fettweis, G. (2014). Influence of pulse shaping on bit error rate performance and out of band radiation of generalized frequency division multiplexing. In 2014 IEEE International Conference on Communications Workshops (ICC) (pp. 43–48). IEEE.

  16. Mishra, M., Aich, S., Kim, H. C., & Pradhan, P. M. (2018). A novel ramp-based pulse shaping filter for reducing out of band emission in 5g GFDM system. In TENCON 2018–2018 IEEE Region 10 Conference (pp. 0096–0101). IEEE.

  17. Kalsotra, S., Kumar, A., Joshi, H. D., Singh, A. K., Dev, K., & Magarini, M. (2019). Impact of Pulse Shaping Design on OOB Emission and Error Probability of GFDM. In 2019 IEEE 2nd 5G World Forum (5GWF) (pp. 226–231). IEEE.

  18. Nagarjuna, T., S. Lakshmi, and K. Nehru. "USRP 2901-based SISO-GFDM transceiver design experiment in virtual and remote laboratory." The International Journal of Electrical Engineering & Education (2019): 0020720919857620.

  19. Mhaske, S., Uliana, D., Kee, H., Ly, T., Aziz, A., & Spasojevic, P. (2015). A 2.48 Gb/s QC-LDPC Decoder Implementation on the NI USRP-2953R. arXiv preprint arXiv:1505.04339.

  20. Chitnis, N., Joshi, T., Padte, S., Donde, S., & Karia, D. (2018). Hard decoding based design of regular LDPC using LabVIEW. In 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT) (pp. 1–4). IEEE.

  21. Barakatain, M., & Kschischang, F. R. (2018). Low-complexity concatenated LDPC-staircase codes. Journal of Lightwave Technology, 36(12), 2443–2449.

    Article  Google Scholar 

  22. Aswathy, G. P., & Haneefa, N. K. (2016). A Survey on Methods of Parallel Concatenation of LDPC Codes. International Journal of Engineering and Advanced Technology, 5(4), 124–129.

    Google Scholar 

  23. Merah, H., Mesri, M., & Tahkoubit, K. (2018). Significant reduction of bit error rate in 5G-Gfdm system using concatenated turbo code with low density parity check code in fading channels. Journal of Electrical Systems, 14(1), 118–129.

    Google Scholar 

  24. Hu, X. Y., Eleftheriou, E., Arnold, D. M., & Dholakia, A. (2001). Efficient implementations of the sum-product algorithm for decoding LDPC codes. In GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No. 01CH37270) (Vol. 2, pp. 1036–1036E). IEEE.

  25. National Instruments, USRP-2901 Block Diagram, http://www.ni.com/documentation/en/usrpsoftware-defined-radio-device/latest/usrp2901/block-diagram/

Download references

Acknowledgements

The authors thank the Institute of Aeronautical Engineering for establishing LabVIEW remote laboratory on the campus for making this implementation possible.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagarjuna Telagam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telagam, N., Lakshmi, S. & Kandasamy, N. Performance Analysis of Parallel Concatenation of LDPC Coded SISO-GFDM System for Distinctive Pulse Shaping Filters using USRP 2901 Device and its Application to WiMAX. Wireless Pers Commun 121, 3085–3123 (2021). https://doi.org/10.1007/s11277-021-08865-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08865-7

Keywords