Skip to main content
Log in

ENROUTE: An Entropy Aware Routing Scheme for Information-Centric Networks (ICN)

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

With the exponential growth of end users and web data, the internet is undergoing the change of paradigm from a user-centric model to a content-centric one, popularly known as information-centric networks (ICN). Current ICN research evolves around three key-issues namely (i) content request searching, (ii) content routing, and (iii) in-network caching scheme to deliver the requested content to the end user. This would improve the user experience to obtain requested content because it lowers the download delay and provides higher throughput. Existing researches have mainly focused on on-path congestion or expected delivery time of a content to determine the optimized path towards custodian. However, it ignores the cumulative effect of the link-state parameters and the state of the cache, and consequently it leads to degrade the delay performance. In order to overcome this shortfall, we consider both the congestion of a link and the state of on-path caches to determine the best possible routes. We introduce a generic term entropy to quantify the effects of link congestion and state of on-path caches. Thereafter, we develop a novel entropy dependent algorithm namely ENROUTE for searching of content request triggered by any user, routing of this content, and caching for the delivery this requested content to the user. The entropy value of an intra-domain node indicates how many popular contents are already cached in the node, which, in turn, signifies the degree of enrichment of that node with the popular contents. On the other hand, the entropy for a link indicates how much the link is congested with the traversal of contents. In order to have reduced delay, we enhance the entropy of caches in nodes, and also use path with low entropy for downloading contents. We evaluate the performance of our proposed ENROUTE algorithm against state-of-the-art schemes for various network parameters and observe an improvement of 29–52% in delay, 12–39% in hit rate, and 4–39% in throughput.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Bari, M. F., Chowdhury, S., Ahmed, R., Boutaba, R., & Mathieu, B. (2012). A survey of naming and routing in information-centric networks. IEEE Communications Magazine, 50(12), 44–53.

    Article  Google Scholar 

  2. Dannewitz, Christian, Kutscher, Dirk, Ohlman, Borje, Farrell, Stephen, Ahlgren, Bengt, & Karl, Holger. (2013). Network of information (NetInf) an Information-Centric Networking architecture. Elsevier Computer Communications, 36, 721–735.

    Article  Google Scholar 

  3. Ahlgren, B., Dannewitz, C., Imbrenda, C., Kutscher, D., & Ohlman, B. (2012). A survey of information-centric networking. IEEE Communications Magazine, 50(7), 26–36.

    Article  Google Scholar 

  4. Zhang, L., et al. (2010). Named data networking (NDN) project, Technical report NDN-0001, PARC.

  5. Paul, S., Yates, R., Raychaudhuri, D., & Kurose, J. (2008). The cache-and-forward network architecture for efficient mobile content delivery services in the future internet. In 2008 First ITU-T Kaleidoscope Academic Conference - Innovations in NGN: Future Network and Services, pp. 367–374.

  6. Martina, V., Garetto, M., & Leonardi, E. (2014). A unified approach to the performance analysis of caching systems. In IEEE INFOCOM, pp. 2040–2048.

  7. Kang, SJ., Lee, SW., & Ko, YB. (2012). A recent popularity based dynamic cache management for content centric networking. In IEEE ICUFN, pp. 219–224.

  8. Laoutaris, N., Che, H., & Stavrakakis, I. (2006). The LCD interconnection of LRU caches and its analysis. Performance Evaluation, 63(7), 609–634.

    Article  Google Scholar 

  9. Bitan, Banerjee, Adita, Kulkarni, & Anand, Seetharam. (2018). Greedy caching: An optimized content placement strategy for Information-Centric Networks. Elsevier Computer Networks, 140, 78–91.

    Article  Google Scholar 

  10. Kutscher, D., et al. (2013). ICN research challenges draft-kutscher-icnrg-challenges-00.

  11. Garcia, N. M., Lenkiewicz, P., Freire, M. M., & Monteiro, P. P. (2007). On the performance of shortest path routing algorithms for modeling and simulation of static source routed networks: An extension to the dijkstra algorithm. In IEEE ICSNC, pp. 60–60.

  12. Magzhan, Kairanbay, & Jani, Hajar Mat. (2013). A review and evaluations of shortest path algorithms. International Journal of Scientific and Technology Research, 2, 99–104.

    Google Scholar 

  13. Eueung, M., & Killat, U. (2002). An alternative genetic algorithmto optimize ospf weights. In Internet Traffic Engineering and Traffic Management, 15th ITC Specialist Seminar.

  14. Dehghan, M., Seetharamz, A., He, T., Salonidis, T., Kurose, J., & Towsley, D. (2014). Optimal caching and routing in hybrid networks. In IEEE MILCOM, pp. 1072–1078.

  15. Chiocchetti, R., Perino, D., Carofiglio, G., Rossi, D., & Rossini, G. (2013). INFORM: A dynamic interest forwarding mechanism for Information Centric Networking. 3rd ACM Sigcomm, pp. 9–14.

  16. Bitan, Banerjee, Anand, Seetharam, Amitava, Mukherjee, & Mrinal Kanti, Naskar. (2017). Characteristic time routing in information centric networks. Elsevier Computer Networks, 113, 148–158.

    Article  Google Scholar 

  17. Thar, Kyi, Tran, Nguyen H., Ullah, Saeed, Oo, Thant Zin, & Hong, Choong Seon. (2018). Online caching and cooperative forwarding in information centric networking. IEEE Access, 6, 59679–59694.

    Article  Google Scholar 

  18. Shi, S., Li, J., Wu, H., Ren, Y., & Zhi, J. (2020). Efm: An edge-computing-oriented forwarding mechanism for information-centric networks. In 3rd International Conference on Hot Information-Centric Networking (HotICN), pp. 154–159.

  19. Raha, A., Babu, S. S., Naskar, M. K., Alfandi, O., & Hogrefe, D. (2011). Trust integrated link state routing protocol for wireless sensor networks (TILSRP). In IEEE ANTS, pp. 1–6.

  20. Raha, A., Naskar, M. K., Chakraborty, A., Alfandi, O., & Hogrefe, D. (2012). A novel indirect trust based link state routing scheme using a robust route trust method for wireless sensor networks. In IEEE NTMS, pp. 1–5.

  21. Chakraborty, A., Raha, A., Maity, S., Naskar, M. K., Karmakar, A. (2012). A fuzzy based trustworthy route selection method using lsrp in wireless sensor networks (FTRSP). In ACM CCSEIT, pp. 413–419.

  22. Babu, S. S., Raha, A., Naskar, M. K., Alfandi, O., & Hogrefe, D. (2012). Fuzzy logic election of node for routing in WSNs. In 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), pp. 1279–1284.

  23. Yang, Y., & Song, T. (2021). Energy-efficient cooperative caching for Information-Centric wireless sensor networking. IEEE Internet of Things Journal p. 1.

  24. Jiang, A., & Bruck, J. (2003). Optimal content placement for en-route web caching. In IEEE NCA, pp. 9–16.

  25. Krishnan, P., Raz, D., & Shavitt, Y. (2000). The cache location problem. IEEE/ACM Transactions on Networking, 8(5), 568–582.

    Article  Google Scholar 

  26. Laoutaris, N., Zissimopoulos, V., & Stavrakakis, I. (2004). Joint object placement and node dimensioning for internet content distribution. Information Processing Letters, 89(6), 273–279.

    Article  MathSciNet  Google Scholar 

  27. Psaras, I., Chai, W. K., & Pavlou, G. (2012). Probabilistic in-network caching for Information-Centric Networks. In ACM ICN, pp. 55–60.

  28. Ioannidis, Stratis, & Yeh, Edmund. (2018). Jointly optimal routing and caching for arbitrary network topologies. IEEE Journal on Selected Areas in Communications, 36(6), 1258–1275.

    Article  Google Scholar 

  29. Din, Ikram Ud, Hassan, Suhaidi, Khan, Muhammad Khurram, Guizani, Mohsen, Ghazali, Osman, & Habbal, Adib. (2017). Caching in Information-Centric Networking: Strategies, challenges, and future research directions. IEEE Communications Surveys and Tutorials, 20(2), 1443–1474.

    Article  Google Scholar 

  30. Pfender, J., Valera, A., & Seah, W. K. G. (2018). Performance comparison of caching strategies for Information-Centric IoT. In ACM ICN, pp. 43–53, New York, USA.

  31. Chiu, K. H. T., Zhang, J., & Bensaou, B. (2020). Cache management in information-centric networks using convolutional neural network. In IEEE GLOBECOM, pp. 1–6.

  32. Yao, Haipeng, Li, Mengnan, Jun, Du., Zhang, Peiying, Jiang, Chunxiao, & Han, Zhu. (2019). Artificial intelligence for information-centric networks. IEEE Communications Magazine, 57(6), 47–53.

    Article  Google Scholar 

  33. Ghosh, Archisman, Chakraborty, Biswadeep, Raha, Arnab, & Mukherjee, Amitava. (2021). Improving network throughput by hardware realization of a dynamic content caching scheme for information-centric networking (ICN). Wireless Personal Communications, 116(4), 2873–2898.

    Article  Google Scholar 

  34. Berger, D. S., Sitaraman, R. K., Harchol-Balter, M. (2017). Adaptsize: Orchestrating the hot object memory cache in a content delivery network. In 14th\(\{\)USENIX\(\}\)Symposium on Networked Systems Design and Implementation (\(\{\)NSDI\(\}\) 17), pp. 483–498.

  35. Cidon, A., Eisenman, A., Alizadeh, M., & Katti, S. (2016). Cliffhanger: Scaling performance cliffs in web memory caches. In 13th\(\{\)USENIX\(\}\)Symposium on Networked Systems Design and Implementation (\(\{\)NSDI\(\}\) 16), pp. 379–392.

  36. Nan, G., Xinping, Y., Mingsong, L., & Wang, Y. (2013). FIFO cache analysis for WCET estimation: A quantitative approach. In Design, Automation and Test in Europe Conference and Exhibition (DATE), pp. 296–301.

  37. Pfender, J., Valera, A., & Seah, W. K. G (2018). Performance comparison of caching strategies for Information-Centric IoT. In ACM ICN, pp. 43–53.

  38. Jacobson, V., et al. (2009). Networking named content. In ACM CoNEXT, pp. 1–12, New York, USA.

  39. Zhang, Lixia, et al. (2014). Named data networking. ACM SIGCOMM, 44(3), 66–73.

    Article  Google Scholar 

  40. Zhang, M., Luo, H., & Zhang, H. (2015). A survey of caching mechanisms in Information-Centric Networking. IEEE Communications Surveys and Tutorials, 17(3), 1473–1499.

    Article  Google Scholar 

  41. Chai, W. K., He, D., Psaras, I., & Pavlou, G. (2012). Cache less for more in Information-Centric Networks. IFIP, 12, 27–40.

    Google Scholar 

  42. Li, Z., & Simon, G. (2011). Time-shifted TV in content centric networks: The case for cooperative in-network caching. In IEEE ICC, pp. 1–6.

  43. Dräxler, M., & Karl, H. (2012). Efficiency of on-path and off-path caching strategies in Information Centric Networks. In 2012 IEEE International Conference on Green Computing and Communications, pp. 581–587.

  44. Saha, S., Lukyanenko, A., & Ylä-Jääski, A. (2013). Cooperative caching through routing control in Information-Centric Networks. In IEEE INFOCOM, pp. 100–104.

  45. Tarnoi, S., Suksomboon, K., Kumwilaisak, W., & Ji, Y. (2014). Performance of probabilistic caching and cache replacement policies for content-centric networks. In 39th Annual IEEE Conference on Local Computer Networks, pp. 99–106.

  46. Hahm, O., Baccelli, E., Schmidt, T. C., Wählisch, M., Adjih, C., & Massoulié, L. (2017). Low-power internet of things with NDN and cooperative caching. In ACM ICN, pp. 98–108, New York, USA.

  47. Rossi, D., & Rossini, G. (2012). On sizing CCN content stores by exploiting topological information. In IEEE INFOCOM NOMEN workshop, pp. 280–285.

  48. Fayazbakhsh, S. et al. (2013). Less pain, most of the gain: Incrementally deployable ICN. In ACM SIGCOMM, pp. 147–158.

  49. Ghodsi, A., Shenker, S., Koponen, T., Singla, A., Raghavan, B., & Wilcox, J. (2011). Information-Centric Networking: Seeing the forest for the trees. In Proceedings of the 10th ACM Workshop on Hot Topics in Networks, pp. 1–6.

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

First two authors have equal contribution.

Corresponding author

Correspondence to Bitan Banerjee.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, B., Paul, S., Alfandi, O. et al. ENROUTE: An Entropy Aware Routing Scheme for Information-Centric Networks (ICN). Wireless Pers Commun 122, 1171–1195 (2022). https://doi.org/10.1007/s11277-021-08944-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08944-9

Keywords

Navigation