Skip to main content
Log in

IoT Eco-system, Layered Architectures, Security and Advancing Technologies: A Comprehensive Survey

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Today almost every person’s life revolves around internet and Internet of Things (IoT). IoT is a paradigm which interconnects devices, people, or networks with the ability to process and respond to any physical or virtual communication without a glitch. It is contemplated to be the next era of communication and made devices smarter and more efficient. IoT hits every application area from home controllers and healthcare to agriculture. It utilizes internet connectivity, sensors and numerous other technologies and protocols for data collection and analysis and delivers user required services effectively. In this paper, a detailed review on various architectures, technologies and protocols used in an IoT eco-system is presented. We have also discussed possible layer wise attacks and how new technologies, fog, edge, cloud, artificial intelligence, machine learning and blockchain could be integrated to existing IoT architecture to deliver flawless services and better security. A summary of current research challenges and future directions in this area is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not Applicable.

Code Availability

Not Applicable.

References

  1. Alli, A. A., & Alam, M. M. (2020). The fog cloud of things: A survey on concepts, architecture, standards, tools, and applications. Internet of Things, 9, 100177. https://doi.org/10.1016/j.iot.2020.100177

    Article  Google Scholar 

  2. Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., & Sikdar, B. (2019). A survey on IoT security: Application areas, security threats, and solution architectures. IEEE Access, 7, 82721–82743. https://doi.org/10.1109/ACCESS.2019.2924045

    Article  Google Scholar 

  3. Afzal, B., Umair, M., Asadullah Shah, G., & Ahmed, E. (2019). Enabling IoT platforms for social IoT applications: Vision, feature mapping, and challenges. Future Generation Computer Systems, 92, 718–731. https://doi.org/10.1016/j.future.2017.12.002

    Article  Google Scholar 

  4. Burhan, M., Rehman, R. A., Khan, B., & Kim, B. S. (2018). IoT elements, layered architectures and security issues: A comprehensive survey. Sensors (Switzerland), 18(9), 2796. https://doi.org/10.3390/s18092796

    Article  Google Scholar 

  5. Sethi, P., & Sarangi, S. R. (2017). Internet of things: Architectures, protocols, and applications. Journal of Electrical and Computer Engineering. https://doi.org/10.1155/2017/9324035

    Article  Google Scholar 

  6. Perwej, Y., Ahmed, M., Kerim, B., & Ali, H. (2019). An extended review on internet of things (IoT) and its promising applications. Communications on Applied Electronics, 7(26), 8–22. https://doi.org/10.5120/cae2019652812

    Article  Google Scholar 

  7. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17(4), 2347–2376. https://doi.org/10.1109/COMST.2015.2444095

    Article  Google Scholar 

  8. Salman, T., & Jain, R. (2017). Advanced computing and communications, vol. 1, no. 1.

  9. Kumar, S., Tiwari, P., & Zymbler, M. (2019). Internet of things is a revolutionary approach for future technology enhancement: A review. Journal of Big Data. https://doi.org/10.1186/s40537-019-0268-2

    Article  Google Scholar 

  10. Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications. IEEE Internet of Things Journal, 4(5), 1125–1142. https://doi.org/10.1109/JIOT.2017.2683200

    Article  Google Scholar 

  11. Mahmoud, R., Yousuf, T., Aloul, F., & Zualkernan, I. (2016). Internet of things (IoT) security: Current status, challenges and prospective measures. In 2015 10th Int. Conf. Internet Technol. Secur. Trans. ICITST 2015, pp. 336–341. doi: https://doi.org/10.1109/ICITST.2015.7412116.

  12. Bairagi, V. K., Joshi, S. L., & Barshikar, S. H. (2018). A survey on internet of things. International Journal of Computer Sciences and Engineering, 6(12), 492–496. https://doi.org/10.26438/ijcse/v6i12.492496

    Article  Google Scholar 

  13. Bouras, M. A., Lu, Q., Dhelim, S., & Ning, H. (2021). A lightweight blockchain-based IoT identity management approach. Future Internet, 13(2), 1–14. https://doi.org/10.3390/fi13020024

    Article  Google Scholar 

  14. Shi-Wan, L., et al. (2019). The industrial internet of things volume G1 : Reference architecture. Ind. Internet Consort. White Pap, vol. Version 1, p. 58 Seiten.

  15. Islam, R., Rahman, M. W., Rubaiat, R., Hasan, M. M., Reza, M. M., & Rahman, M. M. (2021). LoRa and server-based home automation using the internet of things (IoT). Journal of King Saud University—Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2020.12.020

    Article  Google Scholar 

  16. Requirements, F., et al. The IBM advantage for implementing the CSCC cloud customer reference architecture for internet of things (IoT).

  17. INTEL. (2016). The Intel® IoT platform architecture specification white paper internet of things (IoT). pp. 1–11.

  18. Qadah, E., Mock, M., Alevizos, E., & Fuchs, G. (2018). Lambda architecture for batch and stream processing. CEUR Workshop Proc, vol. 2083, no. October, pp. 109–116. [Online]. Available: https://d1.awsstatic.com/whitepapers/lambda-architecure-on-for-batch-aws.pdf.

  19. rfid tags green iot. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7997698 (accessed Jun. 28, 2020).

  20. Parada, R., Melià-Seguí, J., Morenza-Cinos, M., Carreras, A., & Pous, R. (2015). Using RFID to detect interactions in ambient assisted living environments. IEEE Intelligent Systems, 30(4), 16–22. https://doi.org/10.1109/MIS.2015.43

    Article  Google Scholar 

  21. Arshad, R., Zahoor, S., Shah, M. A., Wahid, A., & Yu, H. (2017). Green IoT: An investigation on energy saving practices for 2020 and beyond. IEEE Access, 5, 15667–15681. https://doi.org/10.1109/ACCESS.2017.2686092

    Article  Google Scholar 

  22. Stephen, A., Arockiam, L., & Scholar, R. (2021). Attacks against Rplin Iot: A survey. vol. 25, no. 4, pp. 9767–9786. [Online]. Available: http://annalsofrscb.ro.

  23. Badenhop, C. W., Graham, S. R., Ramsey, B. W., Mullins, B. E., & Mailloux, L. O. (2017). The Z-Wave routing protocol and its security implications. Computers & Security, 68, 112–129. https://doi.org/10.1016/j.cose.2017.04.004

    Article  Google Scholar 

  24. Gulati, K., Kumar Boddu, R. S., Kapila, D., Bangare, S. L., Chandnani, N., & Saravanan, G. (2021). A review paper on wireless sensor network techniques in internet of things (IoT). Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.05.067

    Article  Google Scholar 

  25. Chung, M. A., & Chang, W. H. (2020). Low-cost, low-profile and miniaturized single-plane antenna design for an internet of thing device applications operating in 5G, 4G, V2X, DSRC, WiFi 6 band, WLAN, and WiMAX communication systems. Microwave and Optical Technology Letters, 62(4), 1765–1773. https://doi.org/10.1002/mop.32229

    Article  Google Scholar 

  26. Singh, S., Sanwar Hosen, A. S. M., & Yoon, B. (2021). Blockchain security attacks, challenges, and solutions for the future distributed IoT network. IEEE Access, 9, 13938–13959. https://doi.org/10.1109/ACCESS.2021.3051602

    Article  Google Scholar 

  27. Basir, R., et al. (2019). Fog computing enabling industrial internet of things: State-of-the-art and research challenges. Sensors (Switzerland), 19(21), 1–38. https://doi.org/10.3390/s19214807

    Article  MathSciNet  Google Scholar 

  28. Adelantado, F., Vilajosana, X., Tuset-Peiro, P., Martinez, B., Melia-Segui, J., & Watteyne, T. (2017). Understanding the limits of LoRaWAN. IEEE Communications Magazine, 55(9), 34–40. https://doi.org/10.1109/MCOM.2017.1600613

    Article  Google Scholar 

  29. Fizza, K., et al. (2021). QoE in IoT: A vision, survey and future directions. Discover Internet of Things. https://doi.org/10.1007/s43926-021-00006-7

    Article  Google Scholar 

  30. Vejlgaard, B., Lauridsen, M., Nguyen, H., Mogensen, P., & Sørensen M. (2017). Coverage and capacity analysis of sigfox, lora, gprs, and nb-iot. In 2017 IEEE 85th Vehicular Technology Conference (VTC Spring). IEEE.

  31. Zafari, F., Gkelias, A., & Leung, K. K. (2019). A survey of indoor localization systems and technologies. IEEE Communications Surveys & Tutorials, 21(3), 2568–2599. https://doi.org/10.1109/COMST.2019.2911558

    Article  Google Scholar 

  32. Patnaik, R., Padhy, N., & Srujan Raju, K. (2021). A systematic survey on IoT security issues, vulnerability and open challenges. Advances in Intelligent Systems and Computing, 1171(January), 723–730. https://doi.org/10.1007/978-981-15-5400-1_68

    Article  Google Scholar 

  33. Thread Group. (2015). Thread Usage of 6LoWPAN. White Pap, [Online]. Available: https://threadgroup.org/ourresources#Whitepapers.

  34. Dhumane, A., Bagul, A., & Kulkarni, P. (2015). A review on routing protocol for low power and lossy networks in IoT. International Journal of Advanced Engineering and Global Technology, 3(12), 1440–1444.

    Google Scholar 

  35. Wu, Y. (2020). > accepted by IEEE Communications Magazine< 2.

  36. Nur, R., Saharuna, Z., Irmawati, I., Irawan, I., & Wahyuni, R. (2019). Gateway redundancy using common address redundancy protocol (CARP). IJITEE (International Journal of Information Technology and Electrical Engineering), 2(3), 71. https://doi.org/10.22146/ijitee.43701

    Article  Google Scholar 

  37. Vilajosana, X., et al. (2019). IETF 6TiSCH : A tutorial to cite this version : IETF 6TiSCH : A tutorial.

  38. Gomez, C., Paradells, J., Bormann, C., & Crowcroft, J. (2017). From 6LoWPAN to 6Lo: Expanding the universe of IPv6-supported technologies for the internet of things. IEEE Communications Magazine, 55(12), 148–155. https://doi.org/10.1109/MCOM.2017.1600534

    Article  Google Scholar 

  39. Hong, Y., Choi, Y., Shin, M., & Youn, J. (2015). Analysis of design space and use case in IPv6 over NFC for resource-constrained IoT devices. In Int. Conf. ICT Converg. 2015 Innov. Towar. IoT, 5G, Smart Media Era, ICTC 2015, pp. 1009–1012. doi: https://doi.org/10.1109/ICTC.2015.7354725.

  40. Masirap, M., Amaran, M. H., Yussoff, Y. M., Rahman, R. A., & Hashim, H. (2016). Evaluation of reliable UDP-based transport protocols for internet of things (IoT). In ISCAIE 2016—2016 IEEE Symp. Comput. Appl. Ind. Electron, pp. 200–205. doi: https://doi.org/10.1109/ISCAIE.2016.7575063.

  41. Hussain, F. K., Rahayu, W., & Takizawa, M. (2021). Special issue on Intelligent fog and internet of things (IoT)-based services. World Wide Web, 24(3), 925–927. https://doi.org/10.1007/s11280-021-00888-1

    Article  Google Scholar 

  42. Mohanta, B. K., Jena, D., Satapathy, U., & Patnaik, S. (2020). Survey on IoT security: Challenges and solution using machine learning, artificial intelligence and blockchain technology. Internet of Things, 11, 100227. https://doi.org/10.1016/j.iot.2020.100227

    Article  Google Scholar 

  43. Anuar, B., & Hepworth, E. (2003). WLRP: A resource reservation protocol for quality of service in next-generation wireless networks. In Proceedings of the 28th annual IEEE international conference on local computer networks (LCN’03) (vol. 742. no. 1303/03).

  44. Megyesi, P., Krämer, Z., & Molnár, S. (2016). How quick is QUIC?. In 2016 IEEE Int. Conf. Commun. ICC 2016. doi: https://doi.org/10.1109/ICC.2016.7510788.

  45. Kharrufa, H., Al-Kashoash, H. A. A., & Kemp, A. H. (2019). RPL-based routing protocols in IoT applications: A review. IEEE Sensors Journal, 19(15), 5952–5967. https://doi.org/10.1109/JSEN.2019.2910881

    Article  Google Scholar 

  46. Urien, P. (2016). Three innovative directions based on secure elements for trusted and secured IoT platforms. In 2016 8th IFIP Int. Conf. New Technol. Mobil. Secur. NTMS 2016. doi: https://doi.org/10.1109/NTMS.2016.7792482.

  47. Khalid, L. F., & Ameen, S. Y. (2021). Secure Iot integration in daily lives: A review. Journal of Information Technology and Informatics, 1(1), 6–12.

    Article  Google Scholar 

  48. Mohammed Sadeeq, M., Abdulkareem, N. M., Zeebaree, S. R. M., Mikaeel Ahmed, D., Saifullah Sami, A., & Zebari, R. R. (2021). IoT and cloud computing issues, challenges and opportunities: A review. Qubahan Academic Journal, 1(2), 1–7. https://doi.org/10.48161/qaj.v1n2a36

    Article  Google Scholar 

  49. Kumar, R. P. (2018). Applications in internet of things ( IoT ). In 2018 2nd Int. Conf. Inven. Syst. Control, no. Icisc, pp. 1156–1161.

  50. Naik, N. (2017). Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP. In 2017 IEEE Int. Symp. Syst. Eng. ISSE 2017—Proc. doi: https://doi.org/10.1109/SysEng.2017.8088251.

  51. White, T., Johnstone, M. N., & Peacock, M. (2017). An investigation into some security issues in the DDS messaging protocol. In Proc. 15th Aust. Inf. Secur. Manag. Conf. AISM 2017, pp. 132–139. doi: https://doi.org/10.4225/75/5a84fcff95b52.

  52. hjp: doc: RFC 6120: Extensible Messaging and Presence Protocol (XMPP): Core. https://www.hjp.at/doc/rfc/rfc6120.html (accessed Jul. 04, 2020).

  53. Secure mqtt. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7280018&casa_token=ruwbaN2lssUAAAAA:e6Ppy2aEiuFNGVOd0sMa1lD2NmiKly8K67r3qkQ9UF8L1fAK7NPrrVuB9bmuEeg0is7tUXMcd6M&tag=1 (accessed Jul. 04, 2020).

  54. De Donno, M., Tange, K., & Dragoni, N. (2019). Foundations and evolution of modern computing paradigms: Cloud, IoT, edge, and fog. IEEE Access, 7, 150936–150948. https://doi.org/10.1109/ACCESS.2019.2947652

    Article  Google Scholar 

  55. Stergiou, C., Psannis, K. E., Kim, B. G., & Gupta, B. (2018). Secure integration of IoT and cloud computing. Future Generation Computer Systems, 78, 964–975. https://doi.org/10.1016/j.future.2016.11.031

    Article  Google Scholar 

  56. Botta, A., De Donato, W., Persico, V., & Pescapé, A. (2016). Integration of cloud computing and internet of things: A survey. Future Generation Computer Systems, 56, 684–700. https://doi.org/10.1016/j.future.2015.09.021

    Article  Google Scholar 

  57. Yu, W., et al. (2017). A survey on the edge computing for the internet of things. IEEE Access, 6(c), 6900–6919. https://doi.org/10.1109/ACCESS.2017.2778504

    Article  Google Scholar 

  58. Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal, 3(5), 637–646. https://doi.org/10.1109/JIOT.2016.2579198

    Article  Google Scholar 

  59. Naha, R. K., et al. (2018). Fog computing: Survey of trends, architectures, requirements, and research directions. IEEE Access, 6, 47980–48009. https://doi.org/10.1109/ACCESS.2018.2866491

    Article  Google Scholar 

  60. Omoniwa, B., Hussain, R., Javed, M. A., Bouk, S. H., Member, S., & Malik, S. A. (2018). Fog/edge computing-based IoT (FECIoT): Architecture, applications, and research issues. IEEE Internet of Things Journal, 6(3), 4118–4149.

  61. Mukherjee, M., et al. (2017). Security and privacy in fog computing: Challenges. IEEE Access, 5, 19293–19304. https://doi.org/10.1109/ACCESS.2017.2749422

    Article  Google Scholar 

  62. Fernando, N., Loke, S. W., Avazpour, I., Chen, F. F., Abkenar, A. B., & Ibrahim, A. (2019). Opportunistic fog for IoT: Challenges and opportunities. IEEE Internet of Things Journal, 6(5), 8897–8910. https://doi.org/10.1109/JIOT.2019.2924182

    Article  Google Scholar 

  63. Neto, A. J. V., Zhao, Z., Rodrigues, J. J. P. C., Camboim, H. B., & Braun, T. (2018). Fog-based crime-assistance in smart IoT transportation system. IEEE Access, 6, 11101–11111. https://doi.org/10.1109/ACCESS.2018.2803439

    Article  Google Scholar 

  64. Sruthi, M., & Kavitha, B. R. (2016). A survey on Iot platform. International Journal of Scientific Research and Modern Education (IJSRME) ISSN (online), I(I), 2455–5630.

    Google Scholar 

  65. Lin, J. C. W., & Yeh, K. H. (2021). Security and privacy techniques in IoT environment. Sensors (Switzerland), 21(1), 1–5. https://doi.org/10.3390/s21010001

    Article  Google Scholar 

  66. Networks, S. (2021). Sensor networks. pp. 1–19.

  67. Gautam, S., Malik, A., Singh, N., & Kumar, S. (2019). Recent advances and countermeasures against various attacks in IoT environment. In 2nd Int. Conf. Signal Process. Commun. ICSPC 2019—Proc, pp. 315–319. doi: https://doi.org/10.1109/ICSPC46172.2019.8976527.

  68. Bostami, B., Ahmed, M., & Choudhury, S. (2019). False data injection attacks in internet of things. In Performability in internet of things (pp. 47–58). Cham: Springer. https://doi.org/10.1007/978-3-319-93557-7_4.

  69. Lv, Z. (2020). Security of internet of things edge devices. Software: Practice and Experience. https://doi.org/10.1002/spe.2806

    Article  Google Scholar 

  70. Standaert, F. X. (2010). Introduction to side-channel attacks. In: I. Verbauwhede (Eds.), Secure integrated circuits and systems. Integrated Circuits and Systems. Boston, MA: Springer. https://doi.org/10.1007/978-0-387-71829-3_2.

  71. Mahalakshmi, G., Nadu, T., & Nadu, T. (2018). Denial of sleep attack detection using mobile agent in wireless sensor. International Journal for Research Trends and Innovation, 3(5), 139–149.

    Google Scholar 

  72. Kim, H., Kang, E., Broman, D., & Lee, E. A. (2020). Resilient authentication and authorization for the internet of things (IoT) using edge computing. ACM Trans. Internet Things, 1(1), 1–27. https://doi.org/10.1145/3375837

    Article  Google Scholar 

  73. Čekerevac, Z., Dvorak, Z., Prigoda, L., & Čekerevac, P. (2017). Internet of things and the man-in-the-middle attacks–security and economic risks. MEST J, 5(2), 15–25. https://doi.org/10.12709/mest.05.05.02.03

    Article  Google Scholar 

  74. Gupta, K. S., & Jayant, K. P. (2019). A review study on phishing attack techniques for protecting the attacks. Globus-An International Journal of Management and IT, 10(2), 22–25.

  75. Singh, K. J., & Kapoor, D. S. (2017). Create your own internet of things: A survey of IoT platforms. IEEE Consumer Electronics Magazine, 6(2), 57–68. https://doi.org/10.1109/MCE.2016.2640718

    Article  Google Scholar 

  76. Boo, E. S., Raza, S., Höglund, J., & Ko, J. G. (2019). Towards supporting IoT device storage and network security using DTLs. In MobiSys 2019—Proc. 17th Annu. Int. Conf. Mob. Syst. Appl. Serv, pp. 570–571. doi: https://doi.org/10.1145/3307334.3328630.

  77. Ravi, N., & Shalinie, S. M. (2020). Learning-driven detection and mitigation of DDoS attack in IoT via SDN-cloud architecture. IEEE Internet of Things Journal, 7(4), 3559–3570. https://doi.org/10.1109/JIOT.2020.2973176

    Article  Google Scholar 

  78. Quasim, M. T. (2021). Challenges and applications of internet of things (IoT) in Saudi Arabia.

  79. Zolanvari, M., Teixeira, M. A., Gupta, L., Khan, K. M., & Jain, R. (2019). Machine learning-based network vulnerability analysis of industrial internet of things. IEEE Internet of Things Journal, 6(4), 6822–6834. https://doi.org/10.1109/JIOT.2019.2912022

    Article  Google Scholar 

  80. Li, W., Logenthiran, T., Phan, V. T., & Woo, W. L. (2019). A novel smart energy theft system (SETS) for IoT-based smart home. IEEE Internet of Things Journal, 6(3), 5531–5539. https://doi.org/10.1109/JIOT.2019.2903281

    Article  Google Scholar 

  81. Mahmoud, C., & Aouag, S. (2019). Security for internet of things: A state of the art on existing protocols and open research issues. In Proceedings of the 9th international conference on information systems and technologies (pp. 1–6). https://doi.org/10.1145/3361570.3361622.

  82. Gupta, H., & Van Oorschot, P. C. (2019). Onboarding and software update architecture for IoT devices. In 2019 17th Int. Conf. Privacy, Secur. Trust. PST 2019—Proc. doi: https://doi.org/10.1109/PST47121.2019.8949023.

  83. Hind, M., Noura, O., Amine, K. M., & Sanae, M. (2020). Internet of things: Classification of attacks using CTM method. In ACM Int. Conf. Proceeding Ser. doi: https://doi.org/10.1145/3386723.3387876.

  84. Ghosh, A., Chakraborty, D., & Law, A. (2018). Artificial intelligence in Internet of things. CAAI Transactions on Intelligence Technology, 3(4), 208–218. https://doi.org/10.1049/trit.2018.1008

    Article  Google Scholar 

  85. Samie, F., Bauer, L., & Henkel, J. (2019). From cloud down to things: An overview of machine learning in internet of things. IEEE Internet of Things Journal, 6(3), 4921–4934. https://doi.org/10.1109/JIOT.2019.2893866

    Article  Google Scholar 

  86. De Lima Filho, F. S., Silveira, F. A. F., De Medeiros Brito Junior, A., Vargas-Solar, G., & Silveira, L. F. (2019). Smart detection: An online approach for DoS/DDoS attack detection using machine learning. Security and Communication Networks. https://doi.org/10.1155/2019/1574749

    Article  Google Scholar 

  87. Nguyen, S. N., Nguyen, V. Q., Choi, J., & Kim, K. (2018). Design and implementation of intrusion detection system using convolutional neural network for DoS detection. In ACM Int. Conf. Proceeding Ser, pp. 34–38. doi: https://doi.org/10.1145/3184066.3184089.

  88. Haripriya, A. P., & Kulothungan, K. (2019). Secure-MQTT: An efficient fuzzy logic-based approach to detect DoS attack in MQTT protocol for internet of things. EURASIP Journal on Wireless Communications and Networking. https://doi.org/10.1186/s13638-019-1402-8

    Article  Google Scholar 

  89. Ying, X., Mazer, J., Bernieri, G., Conti, M., Bushnell, L., & Poovendran, R. (2019). Detecting ADS-B spoofing attacks using deep neural networks. In 2019 IEEE Conf. Commun. Netw. Secur. CNS 2019, pp. 187–195. doi: https://doi.org/10.1109/CNS.2019.8802732.

  90. Alzaylaee, M. K., Yerima, S. Y., & Sezer, S. (2020). DL-Droid: Deep learning based android malware detection using real devices. Computers & Security, 89, 101663. https://doi.org/10.1016/j.cose.2019.101663

    Article  Google Scholar 

  91. Čech, P., Lokoč, J., & Silva, Y. N. (2020). Pivot-based approximate k-NN similarity joins for big high-dimensional data. Information Systems, 87, 101410. https://doi.org/10.1016/j.is.2019.06.006

    Article  Google Scholar 

  92. Xu, X., Zhang, Y., Tang, M., Gu, H., Yan, S., & Yang, J. (2019). Emotion recognition based on double tree complex wavelet transform and machine learning in internet of things. IEEE Access, 7, 154114–154120. https://doi.org/10.1109/ACCESS.2019.2948884

    Article  Google Scholar 

  93. Xu, Y., Xia, J., Wu, H., & Fan, L. (2019). Q-learning based physical-layer secure game against multiagent attacks. IEEE Access, 7, 49212–49222. https://doi.org/10.1109/ACCESS.2019.2910272

    Article  Google Scholar 

  94. Kim, M. (2019). Game theoretic approach of eavesdropping attack in millimeter-wave-based WPANs with directional antennas. Wireless Networks, 25(6), 3205–3222. https://doi.org/10.1007/s11276-018-1713-4

    Article  Google Scholar 

  95. Hachimi, M., Kaddoum, G., Gagnon, G. & Illy, P. (2020). Multi-stage jamming attacks detection using deep learning combined with kernelized support vector machine in 5G cloud radio access networks. In 2020 international symposium on networks, computers and communications (ISNCC). IEEE.

  96. Xu, Y., Lei, M., Li, M., Zhao, M., & Hu, B. (2019). A new anti-jamming strategy based on deep reinforcement learning for MANET. In IEEE Veh. Technol. Conf, vol. 2019-April, pp. 1–5. doi: https://doi.org/10.1109/VTCSpring.2019.8746494.

  97. Liang, F., Hatcher, W. G., Liao, W., Gao, W., & Yu, W. (2019). Machine learning for security and the internet of things: The good, the bad, and the ugly. IEEE Access, 7, 158126–158147. https://doi.org/10.1109/ACCESS.2019.2948912

    Article  Google Scholar 

  98. Mohanta, B. K., Jena, D., Panda, S. S., & Sobhanayak, S. (2019). Blockchain technology: A survey on applications and security privacy Challenges. Internet of Things, 8, 100107. https://doi.org/10.1016/j.iot.2019.100107

    Article  Google Scholar 

  99. Raj, A., Maji, K., & Shetty, S. D. (2021). Ethereum for internet of things security. Multimedia Tools and Applications, 80(12), 18901–18915.

    Article  Google Scholar 

  100. Atlam, H. F., & Wills, G. B. (2019). Technical aspects of blockchain and IoT. In Advances in computers (vol. 115, pp. 1–39). Elsevier.

  101. Ali, Samad, et al. (2020). 6G white paper on machine learning in wireless communication networks. arXiv preprint arXiv:2004.13875.

  102. Shabandri, B., & Maheshwari, P. (2019). Enhancing IoT security and privacy using distributed ledgers with IOTA and the tangle. In 2019 6th Int. Conf. Signal Process. Integr. Networks, SPIN 2019, no. September 2016, pp. 1069–1075. doi: https://doi.org/10.1109/SPIN.2019.8711591.

  103. Pirmagomedov, R., & Koucheryavy, Y. (2019). IoT technologies for augmented human: A survey. Internet of Things. https://doi.org/10.1016/j.iot.2019.100120

    Article  Google Scholar 

  104. Zantalis, F., Koulouras, G., Karabetsos, S., & Kandris, D. (2019). A review of machine learning and IoT in smart transportation. Future Internet, 11(4), 1–23. https://doi.org/10.3390/FI11040094

    Article  Google Scholar 

  105. Balaji, S., Nathani, K., & Santhakumar, R. (2019). IoT technology, applications and challenges: A contemporary survey. Wireless Personal Communications, 108(1), 363–388. https://doi.org/10.1007/s11277-019-06407-w

    Article  Google Scholar 

  106. Mistry, I., Tanwar, S., Tyagi, S., & Kumar, N. (2020). Blockchain for 5G-enabled IoT for industrial automation: A systematic review, solutions, and challenges. Mechanical Systems and Signal Processing, 135, 106382. https://doi.org/10.1016/j.ymssp.2019.106382

    Article  Google Scholar 

  107. Lin, F., et al. (2019). Survey on blockchain for internet of things. Journal of Internet Services and Information Security, 9(2), 1–30. https://doi.org/10.22667/JISIS.2019.05.31.001

    Article  Google Scholar 

  108. Rathee, G., Garg, S., Kaddoum, G., & Choi, B. J. (2020). A decision-making model for securing IoT devices in smart industries. IEEE Transactions on Industrial Informatics, 3203(c), 1–1. https://doi.org/10.1109/tii.2020.3005252

    Article  Google Scholar 

  109. Balliu, M., Bastys, I., & Sabelfeld, A. (2019). Securing IoT Apps. IEEE Security and Privacy, 17(5), 22–29. https://doi.org/10.1109/MSEC.2019.2914190

    Article  Google Scholar 

  110. Sharma, B. B., & Kumar, N. (2021). Iot-based intelligent irrigation system for paddy crop using an internet-controlled water pump. International Journal of Agricultural and Environmental Information Systems, 12(1), 21–36. https://doi.org/10.4018/IJAEIS.20210101.oa2

    Article  MathSciNet  Google Scholar 

  111. Ahmad, A., Cuomo, S., Wu, W., & Jeon, G. (2019). Intelligent algorithms and standards for interoperability in internet of things. Future Generation Computer Systems, 92, 1187–1191. https://doi.org/10.1016/j.future.2018.11.015

    Article  Google Scholar 

  112. Noura, M., Atiquzzaman, M., & Gaedke, M. (2019). Interoperability in internet of things: Taxonomies and open challenges. Mobile Networks and Applications, 24(3), 796–809. https://doi.org/10.1007/s11036-018-1089-9

    Article  Google Scholar 

  113. Vermesan, O. 2018. Advancing IoT platforms interoperability.

  114. Oktian, Y. E., Witanto, E. N., & Lee, S.-G. (2021). A conceptual architecture in decentralizing computing, storage, and networking aspect of IoT infrastructure. IoT, 2(2), 205–221. https://doi.org/10.3390/iot2020011

    Article  Google Scholar 

  115. Gupta, A., Christie, R., & Manjula, R. (2017). Scalability in internet of things: Features, techniques and research challenges. International Journal of Computational Intelligence Research, 13(7), 1617–1627.

    Google Scholar 

  116. Ryan, P., & Watson, R. (2017). Research challenges for the internet of things: What role can or play? Systems, 5(1), 24.

    Article  Google Scholar 

  117. Badawy, M. M., Ali, Z. H., & Ali, H. A. (2019). QoS provisioning framework for service-oriented internet of things (IoT). Cluster Computing. https://doi.org/10.1007/s10586-019-02945-x

    Article  Google Scholar 

  118. Raj, J. S., & Basar, A. (2019). Qos optimization of energy efficient routing in Iot wireless sensor networks. Journal of ISMAC, 01(01), 12–23. https://doi.org/10.36548/jismac.2019.1.002

    Article  Google Scholar 

  119. Singh, M., Baranwal, G., & Tripathi, A. K. (2020). QoS-aware selection of IoT-based service. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-020-04601-8

    Article  Google Scholar 

  120. Zeadally, S., Shaikh, F. K., Talpur, A., & Sheng, Q. Z. (2020). Design architectures for energy harvesting in the internet of things. Renewable and Sustainable Energy Reviews, 128(May), 109901. https://doi.org/10.1016/j.rser.2020.109901

    Article  Google Scholar 

  121. Atlam, H. F., & Wills, G. B. (2020). IoT security, privacy, safety and ethics. Springer International Publishing.

    Book  Google Scholar 

Download references

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna Raj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, A., Shetty, S.D. IoT Eco-system, Layered Architectures, Security and Advancing Technologies: A Comprehensive Survey. Wireless Pers Commun 122, 1481–1517 (2022). https://doi.org/10.1007/s11277-021-08958-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08958-3

Keywords

Navigation