Skip to main content
Log in

Super-Wideband Compact Offset Elliptical Ring Patch Antenna for 5G Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The plan and investigation of a compact offset elliptical ring microstrip patch antenna with a tapered feed line are discussed in this article for super wideband applications. The offered antenna exhibits 188.56% impedance bandwidth (2.31–40.0 GHz). The offered antenna is a low-profile printed antenna and gives a ratio bandwidth of 34.63:1 and a bandwidth dimension ratio of 1732 respectively. The radiation pattern plots of offered antenna exhibit that it accomplishes the durable omnidirectional behavior throughout the impedance bandwidth range. The maximum gain of the offered antenna is 5.81 dBi. The measured results (radiation pattern and S11) are in close agreement with simulated results, which reflects the authenticity of the offered design. Also, the flat group delay and desired isolation make this antenna suitable for many useful applications that include wireless access systems, broadband disaster relief applications, radio local area networks and very-small-aperture terminal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Report and order in the commission’s Rules Regarding Ultra-Wideband Transmission Systems (2002). Released by Federal Communications Commission.

  2. Gunaram & Vijay, S. (2020). Microstrip antenna-inception, progress and current-state of the art review. Recent Advances in Electrical and Electronic Engineering, 13, 769–794. https://doi.org/10.2174/2352096513666200110151616.

    Article  Google Scholar 

  3. Tran, D. (2010). On the design of a super wideband antenna, ultra wideband, Boris Lembrikov (Ed.). 399–427. https://doi.org/10.5772/10000.

  4. Rumsey, V. (1966). Frequency independent antennas. Academic Press.

    Google Scholar 

  5. Piyush, O., Anand, S., Gourab, D., & Gangwar, R. K. (2018). Elliptical slot loaded partially segmented circular monopole antenna for super wideband application. AEU—International Journal of Electronics and Communications, 88, 63–69. https://doi.org/10.1016/j.aeue.2018.03.004

    Article  Google Scholar 

  6. Manohar, M., Kshetrimayum, R. S., & Gogoi, A. K. (2014). Printed monopole antenna with tapered feed line, feed region and patch for super wideband applications. IET Microwaves, Antennas and Propagation, 8, 39–45. https://doi.org/10.1049/iet-map.2013.0094

    Article  Google Scholar 

  7. Aziz, S. Z., & Jamlos, M. F. (2016). Compact super wideband patch antenna design using diversities of reactive loaded technique. Microwave and Optical Technology Letters, 58, 2811–2814. https://doi.org/10.1002/mop.30152

    Article  Google Scholar 

  8. Alluri, S., & Rangaswamy, N. (2020). Compact high bandwidth dimension ratio steering-shaped super wideband antenna for future wireless communication applications. Microwave and Optical Technology Letters, 62, 3985–3991. https://doi.org/10.1002/mop.32541

    Article  Google Scholar 

  9. Rahman, M. N., Islam, M. T., Mahmud, M. Z., & Samsuzzaman, M. (2017). Compact microstrip patch antenna proclaiming super wideband characteristics. Microwave and Optical Technology Letters, 59, 2563–2570. https://doi.org/10.1002/mop.30770

    Article  Google Scholar 

  10. Nadeem, I., & Choi, D. Y. (2018). Broadband printed antenna with modified rectangular patch and U-slot in ground plane. Radioelectronics and Communications Systems, 61, 556–564. https://doi.org/10.3103/S0735272718120038

    Article  Google Scholar 

  11. Zhang, X., Rahman, S. U., Cao, Q., Gil, I., & Khan, M. I. (2019). A novel SWB antenna with triple band-notches based on elliptical slot and rectangular split ring resonators. Electronics, 8, 1–17. https://doi.org/10.3390/electronics8020202

    Article  Google Scholar 

  12. Das, S., Mitra, D., & Bhadra Chaudhuri, S. R. (2019). Staircase fractal loaded microstrip patch antenna for super wide band operation. Progress in Electromagnetics Research C, 95, 183–194. https://doi.org/10.2528/PIERC19070105

    Article  Google Scholar 

  13. Gupta, M., Mutai, K. K., Mathur, V., et al. (2020). A novel elliptical ring microstrip patch antenna for ultra-wideband applications. Wireless Personal Communications, 114, 3017–3029. https://doi.org/10.1007/s11277-020-07515-8

    Article  Google Scholar 

  14. Sharma, M. (2019). Superwideband triple notch monopole antenna for multiple wireless applications. Wireless Personal Communications, 104, 459–470. https://doi.org/10.1007/s11277-018-6030-9

    Article  Google Scholar 

  15. Yang, L., Zhang, D., Zhu, X., & Li, Y. (2019). Design of a super wide band antenna and measure of ambient RF density in urban area. IEEE Access, 2019(8), 767–774. https://doi.org/10.1109/ACCESS.2019.2962141

    Article  Google Scholar 

  16. Alibakhshikenari, M., Virdee, B. S., See, C. H., Abd-Alhameed, R. A., Francisco, F., & Limiti, E. (2019). Super-wide impedance bandwidth planar antenna for microwave and millimeter-wave applications. Sensors, 19(10), 2306. https://doi.org/10.3390/s19102306

    Article  Google Scholar 

  17. Warsha, B., Mrinal, S., Tanweer, A., Manohara Pai, M. M., Jaume, A., Aurora, A., & Saumya, D. (2019). Design techniques of super-wideband antenna—existing and future prospective. IEEE Access, 7, 141241–141257. https://doi.org/10.1109/ACCESS.2019.2943655

    Article  Google Scholar 

  18. Ullah, S., Cunjun, R., Sadiq, M. S., Ul, H. T., Fahad, A. K., & He, W. (2020). Super wide band, defected ground structure and stepped meander line antenna for WLAN/ISM/WiMAX/UWB and other wireless communication applications. Sensors, 20(6), 1735. https://doi.org/10.3390/s20061735

    Article  Google Scholar 

  19. Rafique, U., Din, S., & Khalil, H. (2020). Compact CPW-fed super wideband planar elliptical antenna. International Journal of Microwave and Wireless Technologies. https://doi.org/10.1017/S175907872000121X

    Article  Google Scholar 

  20. Chaudhary, A. K., & Manohar, M. (2021). Design and analysis of a compact high gain wideband monopole patch antenna for future handheld gadgets. Progress in Electromagnetics Research C, 109, 227–241. https://doi.org/10.2528/PIERC20122403

    Article  Google Scholar 

  21. Sharma, V., & Sharma, M. M. (2013). Wideband gap coupled assembly of rectangular microstrip patches for Wi-max applications. FREQUENZ Journal of RF-Engineering and Telecommunications, 68(1–2), 25–31. https://doi.org/10.1515/freq-2013-0053

    Article  Google Scholar 

  22. Sharma, V., Saxena, V. K., Sharma, K. B., & Bhatnagar, D. (2012). Radiation performance of circularly polarized broadband gap coupled elliptical patch antenna. FREQUENZ Journal of RF-Engineering and Telecommunications., 66(3), 69–74. https://doi.org/10.1515/freq-2012-0018

    Article  Google Scholar 

  23. (2019). https://www.cst.com.products.cstmws.solvers.transientsolver.

  24. Agrawall, N. P., Kumar, G., & Ray, K. P. (1998). Wide-band planar monopole antennas. IEEE Transactions on Antennas and Propagation, 46, 294–295. https://doi.org/10.1109/8.660976

    Article  Google Scholar 

  25. Ray, K. P. (2008). Design aspects of printed monopole antennas for ultra-wide band applications. International Journal of Antennas and Propagation, 713858. https://doi.org/10.1155/2008/713858.

  26. Kumar, M., & Nath, V. (2020). A circularly polarized printed elliptical wide-slot antenna with high bandwidth-dimension-ratio for wireless applications. Wireless Networks, 26, 5485–5499. https://doi.org/10.1007/s11276-020-02399-9

    Article  Google Scholar 

  27. Figueroa-Torres, C. A., Medina-Monroy, J. L., Lobato-Morales, H., Chavez-Perez, R. A., & Calvillo-Tellez, A. (2017). A novel fractal antenna based on the Sierpinski structure for super wide-band applications. Microwave and Optical Technology Letters, 59, 1148–1153. https://doi.org/10.1002/mop.30489

    Article  Google Scholar 

  28. Okan, T. (2019). A compact octagonal-ring monopole antenna for super wideband applications. Microwave and Optical Technology Letters., 62, 1237–1244.

    Article  Google Scholar 

  29. Liu, J., Esselle, K. P., Hay, S. G., Sun, Z., & Zhong, S. (2013). A compact super-wideband antenna pair with polarization diversity. IEEE Antennas and Wireless Propagation Letters, 12, 1472–1475. https://doi.org/10.1109/LAWP.2013.2287500

    Article  Google Scholar 

  30. Singhal, S., & Singh, A. K. (2016). CPW-fed hexagonal Sierpinski super wideband fractal antenna. IET Microwaves, Antennas and Propagation, 10, 1701–1707. https://doi.org/10.1049/iet-map.2016.0154

    Article  Google Scholar 

  31. Singhal, S. J., & Singh, A. K. (2020). Elliptical monopole based super wideband fractal antenna. Microwave and Optical Technology Letters., 62, 1324–1328. https://doi.org/10.1002/mop.32143

    Article  Google Scholar 

  32. Elhabchi, M., Srifi, M. N., & Touahni, R. (2020). A novel modified U-shaped microstrip antenna for super wide band (SWB) applications. Analog Integrated Circuits and Signal Processing, 102, 571–578. https://doi.org/10.1007/s10470-020-01589-x

    Article  Google Scholar 

  33. Van, S. T., Kwon, G., & Hwang, K. C. (2015). Planar super-wideband loop antenna with asymmetric coplanar strip feed. Electronics Letters, 52, 96–98.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Competitive Research Scheme by RTU (ATU) TEQIP III (project ID TEQIP-III/RTU(ATU)/CRS/2019-20/64) for providing financial assistance for this work. The authors would also like to acknowledge and convey their sincere thanks to the Department of Electronics and Communication Engineering, Government Mahila Engineering College, Ajmer, India for providing the necessary facilities of measurement lab to complete this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Sharma.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest” in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Gunaram, Deegwal, J.K. et al. Super-Wideband Compact Offset Elliptical Ring Patch Antenna for 5G Applications. Wireless Pers Commun 122, 1655–1670 (2022). https://doi.org/10.1007/s11277-021-08965-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08965-4

Keywords

Navigation