Skip to main content

Advertisement

Log in

Architectural Design, Improvement, and Challenges of Distributed Software-Defined Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Software-defined networking (SDN) is widely perceived to simplify network management and monitoring. The introduction of the SDN model into wireless sensor networks (WSNs)—SDWSNs—helps the SDN controller perform intensive tasks. In contrast, sensor nodes will only perform forwarding tasks to address a WSN’s many problems and challenges, such as energy consumption, reliability, and consistency. This study conducts a review following a systematic process to identify the development concerning the architectural design of SDWSNs with a particular emphasis on the distributed control and programmability features of sensor nodes. A total of 84 papers from reputable databases were evaluated through thematic analysis. The findings revealed the relationship between an SDN and a WSN from conceptual perspectives, the taxonomy of research studies conducted for SDWSNs, and the various architectural development of SDWSNs proposed in the literature from programmable sensor nodes’ perspectives, software sensor nodes, and distributed control. Moreover, the open issues and challenges faced by SDWSNs’ solutions still include the inherent problems of optimal energy consumption, security, and distributed implementations for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abbou, A. N., Baddi, Y., & Hasbi, A. (2018). Software defined networks in internet of things integration security: Challenges and solutions. In 2018 6th International conference on wireless networks and mobile communications (WINCOM), pp. 1–6. IEEE

  2. Abdolmaleki, N., Ahmadi, M., Malazi, H. T., & Milardo, S. (2017). Fuzzy topology discovery protocol for sdn-based wireless sensor networks. Simulation Modelling Practice and Theory, 79, 54–68.

    Article  Google Scholar 

  3. Abujubbeh, M., Al-Turjman, F., & Fahrioglu, M. (2019). Software-defined wireless sensor networks in smart grids: An overview. Sustainable Cities and Society 101754.

  4. Agborubere, B., & Sanchez-Velazquez, E. (2017). Openflow communications and tls security in software-defined networks. In 2017 IEEE international conference on internet of things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 560–566. IEEE

  5. Ahmed, Y. A., Ahmad, M. N., Ahmad, N., & Zakaria, N. H. (2019). Social media for knowledge-sharing: A systematic literature review. Telematics and Informatics, 37, 72–112.

    Article  Google Scholar 

  6. Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad hoc Networks, 3(3), 325–349.

    Article  Google Scholar 

  7. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.

    Article  Google Scholar 

  8. Alkasassbeh, M., Al-Naymat, G., Alauthman, M., & Ednat, E. (2018). Optimizing traffic engineering in software defined networking.

  9. Alrajeh, N. A., Bashir, M., & Shams, B. (2013). Localization techniques in wireless sensor networks. International Journal of Distributed Sensor Networks, 9(6), 304628.

    Article  Google Scholar 

  10. Alves, R. C., Oliveira, D. A., Segura, G. A. N., & Margi, C. B. (2019). The cost of software-defining things: A scalability study of software-defined sensor networks. IEEE Access, 7, 115093–115108.

    Article  Google Scholar 

  11. Alves, R. C. A., Margi, C. B., & Kuipers, F. A. (2020). Know when to listen: Sdn-based protocols for directed iot networks. Computer Communications, 150, 672–686.

    Article  Google Scholar 

  12. Amin, R., Reisslein, M., & Shah, N. (2018). Hybrid sdn networks: A survey of existing approaches. IEEE Communications Surveys & Tutorials, 20(4), 3259–3306.

    Article  Google Scholar 

  13. Anadiotis, A. C., Galluccio, L., Milardo, S., Morabito, G., & Palazzo, S. (2019). Sd-wise: A software-defined wireless sensor network. Computer Networks, 159, 84–95.

    Article  Google Scholar 

  14. Angove, P., O’Grady, M., Hayes, J., O’Flynn, B., O’Hare, G. M., & Diamond, D. (2011). A mobile gateway for remote interaction with wireless sensor networks. IEEE Sensors Journal, 11(12), 3309–3310.

  15. Aranda, J., Schölzel, M., Mendez, D., & Carrillo, H. (2018). An energy consumption model for multimodal wireless sensor networks based on wake-up radio receivers. In 2018 IEEE Colombian Conference on Communications and Computing (COLCOM), pp. 1–6. IEEE.

  16. Baddeley, M., Stanoev, A., Raza, U., Jin, Y., & Sooriyabandara, M. (2019). Competition: Adaptive software defined scheduling of low power wireless networks. In Proceedings of the 2019 international conference on embedded wireless systems and networks, To appear.

  17. Bannour, F., Souihi, S., & Mellouk, A. (2018). Distributed sdn control: Survey, taxonomy, and challenges. IEEE Communications Surveys & Tutorials, 20(1), 333–354.

    Article  Google Scholar 

  18. Bera, S., Misra, S., Roy, S. K., & Obaidat, M. S. (2016). Soft-wsn: Software-defined wsn management system for iot applications. IEEE Systems Journal, 12(3), 2074–2081.

    Article  Google Scholar 

  19. Berde, P., Gerola, M., Hart, J., Higuchi, Y., Kobayashi, M., Koide, T., Lantz, B., O’Connor, B., Radoslavov, P., Snow, W. et al. Onos: towards an open, distributed sdn os. In Proceedings of the third workshop on Hot topics in software defined networking, pp. 1–6. ACM

  20. Bianchi, G., Bonola, M., Capone, A., & Cascone, C. (2014). Openstate: Programming platform-independent stateful openflow applications inside the switch. ACM SIGCOMM Computer Communication Review, 44(2), 44–51.

    Article  Google Scholar 

  21. Bin-Yahya, M., & Shen, X. (2019). Htm: Hierarchical trust management for software-defined wsns. In 2019 IEEE Globecom Workshops (GC Wkshps), pp. 1–6. IEEE.

  22. Biradar, R. V., Patil, V., Sawant, S., & Mudholkar, R. (2009). Classification and comparison of routing protocols in wireless sensor networks. Special Issue on Ubiquitous Computing Security Systems, 4(2), 704–711.

    Google Scholar 

  23. Bukar, U. A., Jabar, M. A., Sidi, F., Nor, R. N. H. B., Abdullah, S., & Othman, M. (2020). Crisis informatics in the context of social media crisis communication: Theoretical models, taxonomy, and open issues. IEEE Access, 8, 185842–185869.

    Article  Google Scholar 

  24. Buzura, S., Dadarlat, V., Iancu, B., Peculea, A., Cebuc, E., & Kovacs, R. (2020). Self-adaptive fuzzy qos algorithm for a distributed control plane with application in sdwsn. In 2020 IEEE international conference on automation, quality and testing, robotics (AQTR), pp. 1–6. IEEE.

  25. Chen, L., Wu, D., & Li, Z. (2020). Multi-task mapping and resource allocation mechanism in software defined sensor networks. In 2020 International conference on wireless communications and signal processing (WCSP), pp. 32–37. IEEE.

  26. Cloete, O. P., Abu-Mahfouz, A. M., & Hancke, G. P. (2019). A review of wireless sensor network localisation based on software defined networking. In 2019 IEEE international conference on industrial technology (ICIT), pp. 1731–1736. IEEE.

  27. Cooney, M. (2019). What is sdn and where software-defined networking is going. https://www.networkworld.com/article/3209131/what-sdn-is-and-where-its-going.html

  28. Costanzo, S., Galluccio, L., Morabito, G., & Palazzo, S. (2012). Software defined wireless networks (sdwn): Unbridling sdns. In European workshop on software defined networking, pp. 1–6.

  29. Cui, X., Huang, X., Ma, Y., & Meng, Q. (2019). A load balancing routing mechanism based on sdwsn in smart city. Electronics, 8(3), 273.

    Article  Google Scholar 

  30. De Gante, A., Aslan, M., & Matrawy, A. (2014). Smart wireless sensor network management based on software-defined networking. In 2014 27th Biennial Symposium on Communications (QBSC), pp. 71–75. IEEE.

  31. de Oliveira, B. T., & Margi, C. B. (2016). Distributed control plane architecture for software-defined wireless sensor networks. In 2016 IEEE international symposium on consumer electronics (ISCE), pp. 85–86. IEEE.

  32. de Oliveira, B. T., Gabriel, L. B., & Margi, C. B. (2015). Tinysdn: Enabling multiple controllers for software-defined wireless sensor networks. IEEE Latin America Transactions,13(11), 3690–3696.

  33. Denazis, S., Haleplidis, E., Salim, J.H., Koufopavlou, O., Meyer, D., & Pentikousis, K. (2015). Software-defined networking (sdn): Layers and architecture terminology.

  34. Din, S., Paul, A., Ahmad, A., & Kim, J. H. (2019). Energy efficient topology management scheme based on clustering technique for software defined wireless sensor network. Peer-to-Peer Networking and Applications, 12(2), 348–356.

    Article  Google Scholar 

  35. Dinh, T., Kim, Y., Gu, T., & Vasilakos, A. V. (2017). An adaptive low-power listening protocol for wireless sensor networks in noisy environments. IEEE systems journal, 12(3), 2162–2173.

    Article  Google Scholar 

  36. Dixit, A., Hao, F., Mukherjee, S., Lakshman, T., & Kompella, R. (2013). Towards an elastic distributed sdn controller. ACM SIGCOMM Computer Communication Review, 43(4), 7–12.

    Article  Google Scholar 

  37. Dua, R., Raja, A. R., & Kakadia, D. (2014). Virtualization vs containerization to support paas. In 2014 IEEE international conference on cloud engineering, pp. 610–614. IEEE.

  38. Egidius, P. M., Abu-Mahfouz, A. M., & Hancke, G. P. (2018). Programmable node in software-defined wireless sensor networks: A review. In IECON 2018-44th annual conference of the IEEE industrial electronics society, pp. 4672–4677. IEEE.

  39. Egidius, P. M., Abu-Mahfouz, A. M., & Hancke, G. P. (2019). A comparison of data aggregation techniques in software-defined wireless sensor network. In 2019 IEEE 28th international symposium on industrial electronics (ISIE), pp. 1551–1555. IEEE.

  40. Egidius, P. M., Abu-Mahfouz, A. M., Ndiaye, M., & Hancke, G. P. (2019). Data aggregation in software-defined wireless sensor networks: A review. In 2019 IEEE international conference on industrial technology (ICIT), pp. 1749–1754. IEEE.

  41. Ejaz, W., Naeem, M., Basharat, M., Anpalagan, A., & Kandeepan, S. (2016). Efficient wireless power transfer in software-defined wireless sensor networks. IEEE Sensors Journal, 16(20), 7409–7420.

    Article  Google Scholar 

  42. Farhady, H., Lee, H., & Nakao, A. (2015). Software-defined networking: A survey. Computer Networks, 81, 79–95.

    Article  Google Scholar 

  43. Ferrari, P., Flammini, A., & Sisinni, E. (2011). New architecture for a wireless smart sensor based on a software-defined radio. IEEE Transactions on Instrumentation and Measurement, 60(6), 2133–2141.

    Article  Google Scholar 

  44. Friedman, R., & Sainz, D. (2017). An architecture for sdn based sensor networks. In Proceedings of the 18th international conference on distributed computing and networking, pp. 1–10.

  45. Galluccio, L., Milardo, S., Morabito, G., & Palazzo, S. (2015). Sdn-wise: Design, prototyping and experimentation of a stateful sdn solution for wireless sensor networks. In 2015 IEEE conference on computer communications (INFOCOM), pp. 513–521. IEEE.

  46. Görkemli, B., Tatlıcıoğlu, S., Tekalp, A. M., Civanlar, S., & Lokman, E. (2018). Dynamic control plane for sdn at scale. IEEE Journal on Selected Areas in Communications, 36(12), 2688–2701.

    Article  Google Scholar 

  47. Gowrishankar, S., Basavaraju, T., Manjaiah, D., & Sarkar, S. K. (2008). Issues in wireless sensor networks. Proceedings of the World Congress on Engineering, 1, 978–988.

    Google Scholar 

  48. Haleplidis, E., Joachimpillai, D., Salim, J. H., Lopez, D., Martin, J., Pentikousis, K., Denazis, S., & Koufopavlou, O. (2014). Forces applicability to sdn-enhanced nfv. In 2014 Third European workshop on software defined networks, pp. 43–48. IEEE.

  49. Haleplidis, E., Salim, J. H., Denazis, S., & Koufopavlou, O. (2015). Towards a network abstraction model for sdn. Journal of Network and Systems Management, 23(2), 309–327.

    Article  Google Scholar 

  50. Hansen, E. G., & Schaltegger, S. (2016). The sustainability balanced scorecard: A systematic review of architectures. Journal of Business Ethics, 133(2), 193–221.

    Article  Google Scholar 

  51. Haosen, Z., Muqing, W., & Boyang, L. (2019). Energy-balanced clustering algorithm for software-defined wireless sensor networks. In 2019 IEEE 5th international conference on computer and communications (ICCC), pp. 147–152. IEEE.

  52. Hasan, D., & Othman, M. (2017). Efficient topology discovery in software defined networks: Revisited. Procedia Computer Science, 116, 539–547.

    Article  Google Scholar 

  53. Hassan, A., Anter, A., & Kayed, M. (2021). A survey on extending the lifetime for wireless sensor networks in real-time applications. International Journal of Wireless Information Networks, 1–27.

  54. Hsieh, C. M., Wang, Z., & Henkel, J. (2012). A reconfigurable hardware accelerated platform for clustered wireless sensor networks. In 2012 IEEE 18th international conference on parallel and distributed systems, pp. 498–505. IEEE.

  55. Hu, F., Hao, Q., & Bao, K. (2014). A survey on software-defined network and openflow: From concept to implementation. IEEE Communications Surveys & Tutorials, 16(4), 2181–2206.

    Article  Google Scholar 

  56. Huang, M., & Yu, B. (2019). Lcd: Light-weight control model for data plane in software-defined wireless sensor networks. Transactions on Emerging Telecommunications Technologies, e3557.

  57. IDG: State of the network \(\bullet\) idg (2017). https://www.idg.com/tools-for-marketers/2017-state-network/

  58. Ikram, A., Arif, S., Ayub, N., & Arif, W. (2018). Load balancing in software defined networking (sdn). Management, 2, 3.

    Google Scholar 

  59. Indira, K., & Sakthi, U. (2019). Security issues, countermeasures and dynamic queue scheduling for sdwsn. In 2019 2nd International conference on signal processing and communication (ICSPC), pp. 79–82. IEEE.

  60. Isong, B., Mathebula, I., & Dladlu, N. (2018). Sdn-sdwsn controller fault tolerance framework for small to medium sized networks. In 2018 19th IEEE/ACIS international conference on software engineering, artificial intelligence, networking and parallel/distributed computing (SNPD), pp. 43–51. IEEE.

  61. Jagadeesan, N. A., & Krishnamachari, B. (2014). Software-defined networking paradigms in wireless networks: A survey. ACM Comput. Surv., 47(2), 1–11.

    Article  Google Scholar 

  62. Jalili, A., Keshtgari, M., Akbari, R., & Javidan, R. (2019). Multi criteria analysis of controller placement problem in software defined networks. Computer Communications, 133, 115–128.

    Article  Google Scholar 

  63. Jian, D., Chunxiu, X., Muqing, W., & Wenxing, L. (2017). Design and implementation of a novel software-defined wireless sensor network. In 2017 3rd IEEE international conference on computer and communications (ICCC), pp. 729–733. IEEE.

  64. Jiangwei, S., Muqing, W., & Zhihao, Z. (2018). Clustering algorithm based on extending dynamic subnetwork scheme for software-defined wireless sensor networks. In 2018 IEEE/CIC international conference on communications in China (ICCC Workshops), pp. 190–195. IEEE.

  65. Junli, F., Yawen, W., & Haibin, S. (2017). An improved energy-efficient routing algorithm in software define wireless sensor network. In 2017 IEEE international conference on signal processing, communications and computing (ICSPCC), pp. 1–5. IEEE.

  66. Jurado-Lasso, F. F., Clarke, K., Cadavid, A. N., & Nirmalathas, A. (2021). Energy-aware routing for software-defined multihop wireless sensor networks. IEEE Sensors Journal, 21(8), 10174–10182.

    Article  Google Scholar 

  67. Kadel, R., Ahmed, K., & Nepal, A. (2017). Adaptive error control code implementation framework for software defined wireless sensor network (sdwsn). In 2017 27th International telecommunication networks and applications conference (ITNAC), pp. 1–6. IEEE.

  68. Kgogo, T., Isong, B., & Abu-Mahfouz, A. M. (2017). Software defined wireless sensor networks security challenges. In 2017 IEEE AFRICON, pp. 1508–1513. IEEE.

  69. Khan, I., Belqasmi, F., Glitho, R., Crespi, N., Morrow, M., & Polakos, P. (2015). Wireless sensor network virtualization: A survey. IEEE Communications Surveys & Tutorials, 18(1), 553–576.

    Article  Google Scholar 

  70. Khattak, Z. K., Awais, M., & Iqbal, A. (2014). Performance evaluation of opendaylight sdn controller. In 2014 20th IEEE international conference on parallel and distributed systems (ICPADS), pp. 671–676. IEEE.

  71. Kipongo, J., Olwal, T. O., & Abu-Mahfouz, A. M. (2018). Topology discovery protocol for software defined wireless sensor network: Solutions and open issues. In 2018 IEEE 27th international symposium on industrial electronics (ISIE), pp. 1282–1287. IEEE.

  72. Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering.

  73. Kobo, H. I., & Abu-Mahfouz, A. M. (2019). A distributed control system for software defined wireless sensor networks through containerisation. In 2019 International multidisciplinary information technology and engineering conference (IMITEC), pp. 1–6. IEEE.

  74. Kobo, H. I., Abu-Mahfouz, A. M., & Hancke, G. P. (2019). Efficient controller placement and reelection mechanism in distributed control system for software defined wireless sensor networks. Transactions on Emerging Telecommunications Technologies e3588.

  75. Kobo, H. I., Hancke, G. P., & Abu-Mahfouz, A. M. (2017). Towards a distributed control system for software defined wireless sensor networks. In IECON 2017-43rd annual conference of the IEEE industrial electronics society, pp. 6125–6130. IEEE.

  76. Kobo, H. I., Abu-Mahfouz, A. M., & Hancke, G. P. (2017). A survey on software-defined wireless sensor networks: Challenges and design requirements. IEEE Access, 5, 1872–1899.

    Article  Google Scholar 

  77. Kobo, H. I., Abu-Mahfouz, A. M., & Hancke, G. P. (2018). Fragmentation-based distributed control system for software-defined wireless sensor networks. IEEE Transactions on Industrial Informatics, 15(2), 901–910.

    Article  Google Scholar 

  78. Krasteva, Y. E., Portilla, J., de la Torre, E., & Riesgo, T. (2011). Embedded runtime reconfigurable nodes for wireless sensor networks applications. IEEE Sensors Journal, 11(9), 1800–1810.

    Article  Google Scholar 

  79. Kreutz, D., Ramos, F., Verissimo, P., Rothenberg, C. E., Azodolmolky, S., & Uhlig, S. (2014). Software-defined networking: A comprehensive survey. arXiv preprint arXiv:1406.0440.

  80. Kumar, R., Venkanna, U., & Tiwari, V. (2019). Optimized link utilization based approach for traffic engineering in sdwsn. In 2019 IEEE international conference on advanced networks and telecommunications systems (ANTS), pp. 1–6. IEEE.

  81. Kumar, N., & Vidyarthi, D. P. (2018). A green routing algorithm for iot-enabled software defined wireless sensor network. IEEE Sensors Journal, 18(22), 9449–9460.

    Article  Google Scholar 

  82. Kumar, R., Venkanna, U., & Tiwari, V. (2021). Opt-acm: An optimized load balancing based admission control mechanism for software defined hybrid wireless based iot (sdhw-iot) network. Computer Networks, 188, 107888.

    Article  Google Scholar 

  83. Kuźniar, M., Perešíni, P., & Kostić, D. (2015). What you need to know about sdn flow tables. In International conference on passive and active network measurement, pp. 347–359. Springer.

  84. Lam, J. H., Lee, S. G., Lee, H. J., & Oktian, Y. E. (2016). Tls channel implementation for onos’s east/west-bound communication. In Electronics, communications and networks V, pp. 397–403. Springer.

  85. Lei, C., Muqing, W., & Min, Z. (2018). Balancing energy consumption algorithm based-on controller handover for software-defined wireless sensor network. In 2018 IEEE 4th international conference on computer and communications (ICCC), pp. 909–915. IEEE.

  86. Letswamotse, B. B., Malekian, R., Chen, C. Y., & Modieginyane, K. M. (2018). Software defined wireless sensor networks (sdwsn): A review on efficient resources, applications and technologies. Journal of Internet Technology, 19(5), 1303–1313.

    Google Scholar 

  87. Letswamotse, B. B., Malekian, R., & Modieginyane, K. M. (2020). Adaptable qos provisioning for efficient traffic-to-resource control in software defined wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, 11(6), 2397–2405.

    Article  Google Scholar 

  88. Liu, Q., Ozcelebi, T., Cheng, L., Kuipers, F., & Lukkien, J. (2019). Cluflow: Cluster-based flow management in software-defined wireless sensor networks. IEEE Wireless Communication and Networking Conference

  89. Luo, T., Tan, H. P., & Quek, T. Q. (2012). Sensor openflow: Enabling software-defined wireless sensor networks. IEEE Communications letters, 16(11), 1896–1899.

    Article  Google Scholar 

  90. Luz, T. C., Nunez, G. A., Margi, C. B., & Verdi, F. L. (2019). In-network performance measurements for software defined wireless sensor networks. In 2019 IEEE 16th international conference on networking, sensing and control (ICNSC), pp. 206–211. IEEE.

  91. Mahmud, A., & Rahmani, R. (2011). Exploitation of openflow in wireless sensor networks. In Proceedings of 2011 international conference on computer science and network technology, vol. 1, pp. 594–600. IEEE.

  92. Malboubi, M., Wang, L., Chuah, C. N., & Sharma, P. (2014). Intelligent sdn based traffic (de) aggregation and measurement paradigm (istamp). In IEEE INFOCOM 2014-IEEE conference on computer communications, pp. 934–942. IEEE.

  93. Manuel, M., Isong, B., Esiefarienrhe, M., & Abu-Mahfouz, A. M. (2018). Analysis of notable security issues in sdwsn. In IECON 2018-44th annual conference of the IEEE Industrial Electronics Society, pp. 4706–4711. IEEE.

  94. Mathebula, I., Isong, B., Gasela, N., & Abu-Mahfouz, A. M. (2019). Analysis of sdn-based security challenges and solution approaches for sdwsn usage. In 2019 IEEE 28th international symposium on industrial electronics (ISIE), pp. 1288–1293. IEEE.

  95. Mathebula, I., Isong, B., Gasela, N., & Abu-Mahfouz, A. M. (2020). Analysis of energy-efficient techniques for sdwsn energy usage optimization. In 2020 2nd international multidisciplinary information technology and engineering conference (IMITEC), pp. 01–08. IEEE.

  96. Matlou, O. G., & Abu-Mahfouz, A. M. (2017). Utilising artificial intelligence in software defined wireless sensor network. In IECON 2017-43rd annual conference of the IEEE industrial electronics society, pp. 6131–6136. IEEE.

  97. Medved, J., Varga, R., Tkacik, A., & Gray, K. (2014). Opendaylight: Towards a model-driven sdn controller architecture. In Proceeding of IEEE international symposium on a World of wireless, mobile and multimedia networks 2014, pp. 1–6. IEEE.

  98. Miranda, C., Kaddoum, G., Bou-Harb, E., Garg, S., & Kaur, K. (2020). A collaborative security framework for software-defined wireless sensor networks. IEEE Transactions on Information Forensics and Security, 15, 2602–2615.

    Article  Google Scholar 

  99. Miyazaki, T., Yamaguchi, S., Kobayashi, K., Kitamichi, J., Guo, S., Tsukahara, T., & Hayashi, T. (2014). A software defined wireless sensor network. In 2014 International conference on computing, networking and communications (ICNC), pp. 847–852. IEEE.

  100. Mizuyama, K., Taenaka, Y., & Tsukamoto, K. (2017). Estimation based adaptable flow aggregation method for reducing control traffic on software defined wireless networks. In 2017 IEEE international conference on pervasive computing and communications workshops (PerCom Workshops), pp. 363–368. IEEE.

  101. Modieginyane, K. M., Letswamotse, B. B., Malekian, R., & Abu-Mahfouz, A. M. (2018). Software defined wireless sensor networks application opportunities for efficient network management: A survey. Computers & Electrical Engineering, 66, 274–287.

    Article  Google Scholar 

  102. Modieginyane, K. M., Malekian, R., & Letswamotse, B. B. (2019). Flexible network management and application service adaptability in software defined wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, 10(4), 1621–1630.

    Article  Google Scholar 

  103. Mostafaei, H., & Menth, M. (2018). Software-defined wireless sensor networks: A survey. Journal of Network and Computer Applications, 119, 42–56.

    Article  Google Scholar 

  104. Mukherjee, M., Shu, L., Zhao, T., Li, K., & Wang, H. (2016). Low control overhead-based sleep scheduling in software-defined wireless sensor networks. In 2016 IEEE 18th international conference on high performance computing and communications; IEEE 14th international conference on Smart City; IEEE 2nd international conference on data science and systems (HPCC/SmartCity/DSS), pp. 1236–1237. IEEE.

  105. Ndiaye, M., Abu-Mahfouz, A. M., & Hancke, G. P. (2019). Sdnmm-a generic sdn-based modular management system for wireless sensor networks. IEEE Systems Journal

  106. Ndiaye, M., Abu-Mahfouz, A. M., Hancke, G. P., & Silva, B. (2019). Exploring control-message quenching in sdn-based management of 6lowpans. In 2019 IEEE 17th international conference on industrial informatics (INDIN), vol. 1, pp. 890–983. IEEE.

  107. Ndiaye, M., Hancke, G. P., & Abu-Mahfouz, A. M. (2017). Software defined networking for improved wireless sensor network management: A survey. Sensors, 17(5), 1031.

    Article  Google Scholar 

  108. Nguyen, T. M. C., Hoang, D. B., & Chaczko, Z. (2016). Can sdn technology be transported to software-defined wsn/iot? In 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 234–239. IEEE.

  109. Oliveira, D. A., & Margi, C. B. (2018). Combining metrics for route selection in sdwsn: Static and dynamic approaches evaluation. In 2018 IEEE 10th Latin-American conference on communications (LATINCOM), pp. 1–6. IEEE.

  110. Olivier, F., Carlos, G., & Florent, N. (2015). Sdn based architecture for clustered wsn. In 2015 9th International conference on innovative mobile and internet services in ubiquitous computing, pp. 342–347. IEEE.

  111. Phemius, K., Bouet, M., & Leguay, J. (2014). Disco: Distributed multi-domain sdn controllers. In 2014 IEEE network operations and management symposium (NOMS), pp. 1–4. IEEE.

  112. Pritchard, S. W., Hancke, G. P., & Abu-Mahfouz, A. M. (2017). Security in software-defined wireless sensor networks: Threats, challenges and potential solutions. In 2017 IEEE 15th international conference on industrial informatics (INDIN), pp. 168–173. IEEE.

  113. Pritchard, S. W., Hancke, G. P., & Abu-Mahfouz, A. M. (2018). Cryptography methods for software-defined wireless sensor networks. In 2018 IEEE 27th international symposium on industrial electronics (ISIE), pp. 1257–1262. IEEE.

  114. Pritchard, S. W., Malekian, R., Hancke, G. P., & Abu-Mahfouz, A. M. (2017). Improving northbound interface communication in sdwsn. In IECON 2017-43rd annual conference of the IEEE industrial electronics society, pp. 8361–8366. IEEE.

  115. Puente Fernandez, J. A., Garcia Villalba, L. J., & Kim, T. H. (2018). Software defined networks in wireless sensor architectures. Entropy, 20(4), 225.

    Article  Google Scholar 

  116. Qasem, Y. A., Abdullah, R., Jusoh, Y. Y., Atan, R., & Asadi, S. (2019). Cloud computing adoption in higher education institutions: A systematic review. IEEE Access, 7, 63722–63744.

    Article  Google Scholar 

  117. Rahimifar, A., Kavian, Y. S., Kaabi, H., & Soroosh, M. (2020). Predicting the energy consumption in software defined wireless sensor networks: A probabilistic markov model approach. Journal of Ambient Intelligence and Humanized. Computing, pp. 1–14.

  118. Ranjbar, A., Komu, M., Salmela, P., & Aura, T. (2016). An sdn-based approach to enhance the end-to-end security: Ssl/tls case study. In NOMS 2016-2016 IEEE/IFIP network operations and management symposium, pp. 281–288. IEEE.

  119. Rodriguez-Natal, A., Portoles-Comeras, M., Ermagan, V., Lewis, D., Farinacci, D., Maino, F., & Cabellos-Aparicio, A. (2015). Lisp: A southbound sdn protocol? IEEE Communications Magazine, 53(7), 201–207.

    Article  Google Scholar 

  120. Rostami, A. (2014). The evolution of programmable networks: From active networks to software defined networks (sdn). In Tutorial presented at 26th International Teletraffic Congress (ITC).

  121. Sahoo, K. S., Puthal, D., Obaidat, M. S., Sarkar, A., Mishra, S. K., & Sahoo, B. (2018). On the placement of controllers in software-defined-wan using meta-heuristic approach. Journal of Systems and Software, 145, 180–194.

    Article  Google Scholar 

  122. Sahoo, K. S., Tiwary, M., Sahoo, B., Dash, R., & Naik, K. (2018). Dssdn: Demand-supply based load balancing in software-defined wide-area networks. International Journal of Network Management, 28(4), e2022.

    Article  Google Scholar 

  123. Sakic, E., & Kellerer, W. (2017). Response time and availability study of raft consensus in distributed sdn control plane. IEEE Transactions on Network and Service Management, 15(1), 304–318.

    Article  Google Scholar 

  124. Salma, B., Youssef, B., & Abderrahim, H. (2019). Software defined networking based for improved wireless sensor network. In International conference on artificial intelligence and symbolic computation, pp. 246–258. Springer.

  125. Samociuk, D. (2015). Secure communication between openflow switches and controllers. AFIN, 2015, 39.

    Google Scholar 

  126. Scott-Hayward, S., O’Callaghan, G., & Sezer, S. (2013). Sdn security: A survey. In 2013 IEEE SDN for future networks and services (SDN4FNS), pp. 1–7. IEEE (2013)

  127. Scott-Hayward, S., Natarajan, S., & Sezer, S. (2015). A survey of security in software defined networks. IEEE Communications Surveys & Tutorials, 18(1), 623–654.

    Article  Google Scholar 

  128. Segura, G. A. N., Chorti, A., & Margi, C. B. (2020). Multimetric online intrusion detection in software-defined wireless sensor networks. In 2020 IEEE Latin-American conference on communications (LATINCOM), pp. 1–6. IEEE.

  129. Segura, G. A. N., Margi, C. B., & Chorti, A. (2019). Understanding the performance of software defined wireless sensor networks under denial of service attack. Open Journal of Internet of Things (OJIOT), 5(1), 58–68.

    Google Scholar 

  130. Sejaphala, L. C., & Velempini, M. (2020). The design of a defense mechanism to mitigate sinkhole attack in software defined wireless sensor cognitive radio networks. Wireless Personal Communications, 113(2), 977–993.

    Article  Google Scholar 

  131. Shaghaghi, A., Kanhere, S. S., Kaafar, M. A., & Jha, S. (2018). Gwardar: Towards protecting a software-defined network from malicious network operating systems. In 2018 IEEE 17th international symposium on network computing and applications (NCA), pp. 1–5. IEEE.

  132. Shiny, S. S. G., Priya, S. S., & Murugan, K. (2021). Repeated game theory-based reducer selection strategy for energy management in sdwsn. Computer Networks, 193, 108094.

    Article  Google Scholar 

  133. Showell, J. (2015). Containerisation vs virtualisation–what’s the difference. http://www.serverspace.co

  134. Silicon: Evolution of wireless sensor networks (2013). http://www.silabs.com/Support/20Documents/TechnicalDocs/evolution-of-wireless-sensor-networks.pdf

  135. Sood, K., Yu, S., & Xiang, Y. (2015). Software-defined wireless networking opportunities and challenges for internet-of-things: A review. IEEE Internet of Things Journal, 3(4), 453–463.

    Article  Google Scholar 

  136. Srisooksai, T., Kaemarungsi, K., Takada, J., & Saito, K. (2019). Path loss measurement and prediction in outdoor fruit orchard for wireless sensor network at 2.4 ghz band. Progress in Electromagnetics Research, 90, 237–252.

    Article  Google Scholar 

  137. Srivastava, N. (2010). Challenges of next-generation wireless sensor networks and its impact on society. arXiv preprint arXiv:1002.4680.

  138. Stallings, W. (2015). Foundations of modern networking: SDN, NFV. QoE: IoT, and Cloud. Addison-Wesley Professional.

  139. Suraci, C., Araniti, G., Abrardo, A., Bianchi, G., & Iera, A. (2021). A stakeholder-oriented security analysis in virtualized 5g cellular networks. Computer Networks, 184, 107604.

    Article  Google Scholar 

  140. Tang, T. A., Mhamdi, L., McLernon, D., Zaidi, S. A. R., & Ghogho, M. (2016). Deep learning approach for network intrusion detection in software defined networking. In 2016 international conference on wireless networks and mobile communications (WINCOM), pp. 258–263. IEEE.

  141. Tariq, N., Asim, M., Maamar, Z., Farooqi, M. Z., Faci, N., & Baker, T. (2019). A mobile code-driven trust mechanism for detecting internal attacks in sensor node-powered iot. Journal of Parallel and Distributed Computing, 134, 198–206.

    Article  Google Scholar 

  142. Tarnaras, G., Haleplidis, E., & Denazis, S. (2015). Sdn and forces based optimal network topology discovery. In Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft), pp. 1–6. IEEE.

  143. Thupae, R., Isong, B., Gasela, N., & Abu-Mahfouz, A. M. (2018). Machine learning techniques for traffic identification and classifiacation in sdwsn: A survey. In IECON 2018-44th annual conference of the IEEE Industrial Electronics Society, pp. 4645–4650. IEEE.

  144. Thupae, R., Isong, B., Gasela, N., & Abu-Mahfouz, A. M. (2018). Software defined wireless sensor networks mangement and security challenges: A review. In IECON 2018-44th annual conference of the IEEE Industrial Electronics Society, pp. 4736–4741. IEEE.

  145. Tian, W., Muqing, W., & Min, Z. (2018). Design and analysis of software-defined wireless sensor network based on mobile agent topology discovery. In 2018 IEEE 4th international conference on computer and communications (ICCC), pp. 916–922. IEEE.

  146. TOOTOOCIAN, A. (2010). A distributed control plane for openflow. In Proceedings of NSDI Internet Network Management Workshop/Workshop on Research on Enterprise Networking (INM/WREN), 2010.

  147. Tripathi, P., & Subbu, K. P. (2019). A simulation based study to identify optimal number of controllers for multi-application scenarios in software defined wireless sensor network (sdwsn). In 2019 IEEE international conference on advanced networks and telecommunications systems (ANTS), pp. 1–4. IEEE.

  148. Trois, C., Del Fabro, M. D., de Bona, L. C., & Martinello, M. (2016). A survey on sdn programming languages: Toward a taxonomy. IEEE Communications Surveys & Tutorials, 18(4), 2687–2712.

    Article  Google Scholar 

  149. Tsai, P. W., Tsai, C. W., Hsu, C. W., & Yang, C. S. (2018). Network monitoring in software-defined networking: A review. IEEE Systems Journal, 12(4), 3958–3969.

    Article  Google Scholar 

  150. Tumuluri, R., Kovi, A., & Alluri, B. K. R. (2018). An energy-efficient algorithm using layer heads for software-defined wireless sensor networks. In 2018 International conference on recent trends in advance computing (ICRTAC), pp. 103–108. IEEE.

  151. Umba, S. M. W., Abu-Mahfouz, A. M., Ramotsoela, T., & Hancke, G. P. (2019). A review of artificial intelligence based intrusion detection for software-defined wireless sensor networks. In 2019 IEEE 28th International symposium on industrial electronics (ISIE), pp. 1277–1282. IEEE.

  152. Vera, S. D., Bayo, A., Medrano, N., Calvo, B., & Celma, S. (2011). A programmable plug & play sensor interface for wsn applications. Sensors, 11(9), 9009–9032.

    Article  Google Scholar 

  153. Wang, R., Zhang, Z., Zhang, Z., & Jia, Z. (2018). Etmrm: An energy-efficient trust management and routing mechanism for sdwsns. Computer Networks, 139, 119–135.

    Article  Google Scholar 

  154. Wei, Y., Muqing, W., Wenxing, L., & Min, Z. (2017). The design of load-balance based routing algorithm in software defined wireless sensor networks. In 2017 IEEE/CIC international conference on communications in China (ICCC), pp. 1–6. https://doi.org/10.1109/ICCChina.2017.8330522.

  155. Wenxing, L., Muqing, W., & Yuewei, W. (2016). Energy-efficient algorithm based on multi-dimensional energy space for software-defined wireless sensor networks. In 2016 International Symposium on Wireless Communication Systems (ISWCS), pp. 309–314. IEEE.

  156. Wickboldt, J. A., De Jesus, W. P., Isolani, P. H., Both, C. B., Rochol, J., & Granville, L. Z. (2015). Software-defined networking: Management requirements and challenges. IEEE Communications Magazine, 53(1), 278–285.

    Article  Google Scholar 

  157. Xia, W., Wen, Y., Foh, C. H., Niyato, D., & Xie, H. (2014). A survey on software-defined networking. IEEE Communications Surveys & Tutorials, 17(1), 27–51.

    Article  Google Scholar 

  158. Xinying, C., Muqing, W., & Wenxing, L. (2017). Energy efficient algorithm for sdwsns based on dacr and energy hierarchy. In 2017 3rd IEEE international conference on computer and communications (ICCC), pp. 182–187. IEEE.

  159. Xu, C., Jin, W., Zhao, G., Tianfield, H., Yu, S., & Qu, Y. (2017). A novel multipath-transmission supported software defined wireless network architecture. IEEE Access, 5, 2111–2125.

    Article  Google Scholar 

  160. Xu, F., Ye, H., Yang, F., & Zhao, C. (2019). Software defined mission-critical wireless sensor network: Architecture and edge offloading strategy. IEEE Access, 7, 10383–10391.

    Article  Google Scholar 

  161. Yajun, L., Muqing, W., & Min, Z. (2018). Network-balanced algorithm based on hierarchical subnet space for software-defined wireless sensor networks. In 2018 IEEE 4th international conference on computer and communications (ICCC), pp. 894–898. IEEE.

  162. Ye, D., & Zhang, M. (2017). A self-adaptive sleep/wake-up scheduling approach for wireless sensor networks. IEEE Transactions on Cybernetics, 48(3), 979–992.

    Article  Google Scholar 

  163. Younus, M. U., Khan, M. K., Anjum, M. R., Afridi, S., Arain, Z. A., & Jamali, A. A. (2020). Optimizing the lifetime of software defined wireless sensor network via reinforcement learning. IEEE. Access

  164. Zeng, D., Miyazaki, T., Guo, S., Tsukahara, T., Kitamichi, J., & Hayashi, T. (2013). Evolution of software-defined sensor networks. In 2013 IEEE 9th international conference on mobile ad-hoc and sensor networks, pp. 410–413. IEEE.

  165. Zeng, D., Li, P., Guo, S., Miyazaki, T., Hu, J., & Xiang, Y. (2015). Energy minimization in multi-task software-defined sensor networks. IEEE Transactions on Computers, 64(11), 3128–3139.

    Article  MathSciNet  MATH  Google Scholar 

  166. Zhang, D.g., Zhou, S., & Tang, Y.m. (2018). A low duty cycle efficient mac protocol based on self-adaption and predictive strategy. Mobile Networks and Applications, 23(4), 828–839.

  167. Zhao, T., Wang, H., Mukherjee, M., & Shu, L. (2017). Design of a low control-flow overhead-based software-defined wireless sensor network with link failure. In 2017 13th International conference on natural computation, fuzzy systems and knowledge discovery (ICNC-FSKD), pp. 2805–2811. IEEE.

  168. Ziyin, W., Muqing, W., & Min, Z. (2018). Design and analysis of dual-channel structure for software-defined wireless sensor networks. In 2018 IEEE 4th international conference on computer and communications (ICCC), pp. 889–893. IEEE.

  169. Zughoul, O., Momani, F., Almasri, O., Zaidan, A., Zaidan, B., Alsalem, M., et al. (2018). Comprehensive insights into the criteria of student performance in various educational domains. IEEE Access, 6, 73245–73264.

    Article  Google Scholar 

  170. Zuo, Y., Wu, Y., Min, G., & Cui, L. (2019). Learning-based network path planning for traffic engineering. Future Generation Computer Systems, 92, 59–67.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank everyone who provided valuable suggestions and support to improve the content, quality and presentation of this paper.

Funding

This work was partially supported by the Universiti Putra Malaysia under the High Impact Putra Grant: UPM/700-2/1/GPB/2017/9557900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umar Ali Bukar.

Ethics declarations

Conflict of interest

The authors wish to state that there are no conflicts of interest between the authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukar, U.A., Othman, M. Architectural Design, Improvement, and Challenges of Distributed Software-Defined Wireless Sensor Networks. Wireless Pers Commun 122, 2395–2439 (2022). https://doi.org/10.1007/s11277-021-09000-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09000-2

Keywords

Navigation