Skip to main content
Log in

Communication Solutions for Vehicle Ad-hoc Network in Smart Cities Environment: A Comprehensive Survey

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In recent years, the explosive growth of multimedia applications and services has required further improvements in mobile systems to meet transfer speed requirements. Mobile Ad-hoc Network was formed in the 1970s. It is a set of mobile devices that have self-configuring capable to establish parameters to transmit data without relying on an pre-installed infrastructure systems. Today, MANET is strongly applied in many fields such as healthcare, military, smart agriculture, and disaster prevention. In the transportation area, in order to meet the unique characteristics of the vehicle network, such as movement pattern, high mobility with the support of RSUs, MANET has evolved into Vehicle Ad-hoc Networks, also called VANET. Due to the mobility of the nodes, like MANET, ​​the performance of VANET is relatively low and depends on the communication technologies. Designing more flexible, reliable, and smarter routing protocols to improve VANET performance for smart urban is a significant challenge. In this study, we conduct a survey of communication solutions for VANET in recent years. The results indicated a common framework for designing VANET communication solutions based on three main approaches: multi-metric, UAV/Cloud/Internet, and Intelligent. Moreover, with each proposed solution, we also analyse to show the focus of the research and the results achieved. Finally, we discuss and point out possible future research directions. We hope that the research results in this work will be important guidelines for future research in the communication area for VANET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cisco Annual Internet Report. (2018–2023). Updated 2020. https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html.

  2. Quy, V. K., Chuan, P. M., Nam, V. H., Linh, D. M., Ban, N. T., & Han, N. D. (2021). A high-performance routing protocol based on mobile agent for mobile Ad hoc networks. International Journal of Interactive Mobile Technologies, 15(3), 30–42. https://doi.org/10.3991/ijim.v15i03.13007

    Article  Google Scholar 

  3. Adibi, S. (2018). Mobile health personal-to-wide area network disaster management paradigm. IEEE Sensors Journal, 18(23), 9874–9881. https://doi.org/10.1109/JSEN.2018.2872418

    Article  Google Scholar 

  4. Fan, B., He, Z., Tian, H., Kong, D., & Chen, Y. (2020). Energy-efficient resource allocation for dynamic priority-based vehicular mobile-health communications. IEEE Systems Journal, 14(2), 2097–2108. https://doi.org/10.1109/JSYST.2019.2919569

    Article  Google Scholar 

  5. Kao, Y., Samani, H., Tasi, S., Jalaian, B., Suri, N., & Lee, M. (2019). Intelligent search, rescue, and disaster recovery via internet of things. Global IoT Summit (GIoTS), 2019, 1–7. https://doi.org/10.1109/GIOTS.2019.8766391

    Article  Google Scholar 

  6. Montecchiari, T. L., Felice, M. D., & Bononi, L. (2020). A GPS-free flocking model for aerial mesh deployments in disaster-recovery scenarios. IEEE Access, 8, 91558–91573. https://doi.org/10.1109/ACCESS.2020.2994466

    Article  Google Scholar 

  7. Khattak, H. A., Farman, H., Jan, B., & Din, I. U. (2019). Toward integrating vehicular clouds with IOT for smart city services. IEEE Network, 33(2), 65–71. https://doi.org/10.1109/MNET.2019.1800236

    Article  Google Scholar 

  8. Oubbati, O. S., Atiquzzaman, M., Lorenz, P., Tareque, M. H., & Hossain, M. S. (2019). Routing in flying ad hoc networks: survey, constraints, and future challenge perspectives. IEEE Access, 7, 81057–81105. https://doi.org/10.1109/ACCESS.2019.2923840

    Article  Google Scholar 

  9. Xu, J., et al. (2020). Design of smart unstaffed retail shop based on IoT and artificial intelligence. IEEE Access, 8, 147728–147737. https://doi.org/10.1109/ACCESS.2020.3014047

    Article  Google Scholar 

  10. Rayhana, R., Xiao, G., & Liu, Z. (2020). Internet of things empowered smart greenhouse farming. IEEE Journal of Radio Frequency Identification, 4(3), 195–211. https://doi.org/10.1109/JRFID.2020.2984391

    Article  Google Scholar 

  11. Maddikunta, P. K. R., et al. (2021). Unmanned aerial vehicles in smart agriculture: applications, requirements, and challenges. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2021.3049471 (Early Access).

    Article  Google Scholar 

  12. Hussain, Q., Alhajyaseen, W., Brijs, K., Pirdavani, A., & Brijs, T. (2021). Improved traffic flow efficiency during yellow interval at signalized intersections using a smart countdown system. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2020.3030130 (Early Access).

    Article  Google Scholar 

  13. Han, Z., Liang, J., & Li, J. (2018). Design of intelligent road recognition and warning system for vehicles based on binocular vision. IEEE Access, 6, 62880–62889. https://doi.org/10.1109/ACCESS.2018.2876702

    Article  Google Scholar 

  14. Ge, H., & Yang, Y. (2020). Research on calculation of warning zone length of freeway based on micro-simulation model. IEEE Access, 8, 76532–76540. https://doi.org/10.1109/ACCESS.2020.2989471

    Article  Google Scholar 

  15. Qiu, T., Wang, X., Chen, C., Atiquzzaman, M., & Liu, L. (2018). TMED: A spider-web-like transmission mechanism for emergency data in vehicular Ad Hoc networks. IEEE Transactions on Vehicular Technology, 67(9), 8682–8694. https://doi.org/10.1109/TVT.2018.2841348

    Article  Google Scholar 

  16. More, S., & Naik, U. (2018). Novel technique in multihop environment for efficient emergency message dissemination and lossless video transmission in VANETS. Journal of Communications and Information Networks, 3(4), 101–111. https://doi.org/10.1007/s41650-018-0017-2

    Article  Google Scholar 

  17. Lu, Z., Qu, G., & Liu, Z. (2019). A survey on recent advances in vehicular network security, trust, and privacy. IEEE Transactions on Intelligent Transportation Systems, 20(2), 760–776. https://doi.org/10.1109/TITS.2018.2818888

    Article  Google Scholar 

  18. Quy, V. K., Nam, V. H., Linh, D. M., et al. (2021). A survey of QoS-aware routing protocols for the MANET-WSN convergence scenarios in IoT networks. Wireless Personal Communications. https://doi.org/10.1007/s11277-021-08433-z

    Article  Google Scholar 

  19. Haseeb, K., Almustafa, K. M., Jan, Z., Saba, T., & Tariq, U. (2020). Secure and energy-aware heuristic routing protocol for wireless sensor network. IEEE Access, 8, 163962–163974. https://doi.org/10.1109/ACCESS.2020.3022285

    Article  Google Scholar 

  20. Perkins, C., & Bhagwat, P. (2004). Highly dynamic destination sequenced distance vector routing (DSDV) for mobile computers. ACM SIGCOMM. https://doi.org/10.1145/190314.190336

    Article  Google Scholar 

  21. Accessed on: Feb. 20, 2021, [Online]. Available:https://www.ietf.org/rfc/rfc3626

  22. Accessed on: Feb. 20, 2021, [Online]. Available: https://www.ietf.org/rfc/rfc3561

  23. Accessed on: Feb. 20, 2021, [Online]. Available: https://www.ietf.org/rfc/rfc4728.

  24. Hajlaoui, R., Guyennet, H., & Moulahi, T. (2016). A survey on heuristic-based routing methods in vehicular Ad-hoc network: Technical challenges and future trends. IEEE Sensors Journal, 16(17), 6782–6792. https://doi.org/10.1109/JSEN.2016.2583382

    Article  Google Scholar 

  25. Hawbani, A., et al. (2021). A novel heuristic data routing for urban vehicular Ad-hoc networks. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2021.3055504 (Early Access).

    Article  Google Scholar 

  26. Zhang, H., Wang, X., Memarmoshrefi, P., & Hogrefe, D. (2017). A survey of ant colony optimization based routing protocols for mobile Ad hoc networks. IEEE Access, 5, 24139–24161. https://doi.org/10.1109/ACCESS.2017.2762472

    Article  Google Scholar 

  27. Xing, H., Song, F., Yan, L., & Pan, W. (2019). On multicast routing with network coding: A multi-objective artificial bee colony algorithm. China Communications, 16(2), 160–176.

    Google Scholar 

  28. Wang, Z., Ding, H., Li, B., Bao, L., & Yang, Z. (2020). An energy efficient routing protocol based on improved artificial bee colony algorithm for wireless sensor networks. IEEE Access, 8, 133577–133596. https://doi.org/10.1109/ACCESS.2020.3010313

    Article  Google Scholar 

  29. Khan, I. U., Qureshi, I. M., Aziz, M. A., Cheema, T. A., & Shah, S. B. H. (2020). Smart IoT control-based nature inspired energy efficient routing protocol for flying Ad Hoc network (FANET). IEEE Access, 8, 56371–56378. https://doi.org/10.1109/ACCESS.2020.2981531

    Article  Google Scholar 

  30. Xia, Y., Qin, X., Liu, B., & Zhang, P. (2018). A greedy traffic light and queue aware routing protocol for urban VANETs. China Communications, 15(7), 77–87. https://doi.org/10.1109/CC.2018.8424605

    Article  Google Scholar 

  31. Tian, D., et al. (2018). A microbial inspired routing protocol for VANETs. IEEE Internet of Things Journal, 5(4), 2293–2303. https://doi.org/10.1109/JIOT.2017.2737466

    Article  Google Scholar 

  32. Yang, X., Li, M., Qian, Z., & Di, T. (2018). Improvement of GPSR protocol in vehicular Ad Hoc Network. IEEE Access, 6, 39515–39524. https://doi.org/10.1109/ACCESS.2018.2853112

    Article  Google Scholar 

  33. Luo, W., & Ma, W. (2018). Efficient and secure access control scheme in the standard model for vehicular cloud computing. IEEE Access, 6, 40420–40428. https://doi.org/10.1109/ACCESS.2018.2858233

    Article  Google Scholar 

  34. Goudarzi, F., Asgari, H., & Al-Raweshidy, H. S. (2019). Traffic-aware VANET routing for city environments—a protocol based on ant colony optimization. IEEE Systems Journal, 13(1), 571–581. https://doi.org/10.1109/JSYST.2018.2806996

    Article  Google Scholar 

  35. Chen, C., Liu, L., Qiu, T., Wu, D. O., & Ren, Z. (2019). Delay-aware grid-based geographic routing in urban VANETs: A backbone approach. IEEE/ACM Transactions on Networking, 27(6), 2324–2337. https://doi.org/10.1109/TNET.2019.2944595

    Article  Google Scholar 

  36. Silva, A., Reza, N., & Oliveira, A. (2019). Improvement and performance evaluation of gpsr-based routing techniques for vehicular Ad Hoc networks. IEEE Access, 7, 21722–21733. https://doi.org/10.1109/ACCESS.2019.2898776

    Article  Google Scholar 

  37. Tang, Y., Cheng, N., Wu, W., Wang, M., Dai, Y., & Shen, X. (2019). Delay-Minimization routing for heterogeneous VANETs with machine learning based mobility prediction. IEEE Transactions on Vehicular Technology, 68(4), 3967–3979. https://doi.org/10.1109/TVT.2019.2899627

    Article  Google Scholar 

  38. Huang, C., Lin, T., & Tseng, K. (2019). Data dissemination of application service by using member-centric routing protocol in a platoon of internet of vehicle (IoV). IEEE Access, 7, 127713–127727. https://doi.org/10.1109/ACCESS.2019.2936456

    Article  Google Scholar 

  39. Cárdenas, L. L., Mezher, A. M., Bautista, P. A. B., & Igartua, M. A. (2019). A probability-based multimetric routing protocol for vehicular Ad Hoc networks in urban scenarios. IEEE Access, 7, 178020–178032. https://doi.org/10.1109/ACCESS.2019.2958743

    Article  Google Scholar 

  40. Rehman, G. U., Ghani, A., Zubair, M., et al. (2019). IPS: Incentive and punishment scheme for omitting selfishness in the internet of vehicles (Iov). IEEE Access, 7, 109026–109037. https://doi.org/10.1109/ACCESS.2019.2933873

    Article  Google Scholar 

  41. Liu, H., Qiu, T., Zhou, X., Chen, C., & Chen, N. (2020). Parking-area-assisted spider-web routing protocol for emergency data in urban VANET. IEEE Transactions on Vehicular Technology, 69(1), 971–982. https://doi.org/10.1109/TVT.2019.2954159

    Article  Google Scholar 

  42. Sayad Haghighi, M., & Aziminejad, Z. (2020). Highly anonymous mobility-tolerant location-based onion routing for VANETs. IEEE Internet of Things Journal, 7(4), 2582–2590. https://doi.org/10.1109/JIOT.2019.2948315

    Article  Google Scholar 

  43. Wu, J., Fang, M., Li, H., & Li, X. (2020). RSU-assisted traffic-aware routing based on reinforcement learning for urban vanets. IEEE Access, 8, 5733–5748. https://doi.org/10.1109/ACCESS.2020.2963850

    Article  Google Scholar 

  44. Din, S., Qureshi, K. N., Afsar, M. S., Rodrigues, J. J. P. C., Ahmad, A., & Choi, G. S. (2020). Beaconless traffic-aware geographical routing protocol for intelligent transportation system. IEEE Access, 8, 187671–187686. https://doi.org/10.1109/ACCESS.2020.3030982

    Article  Google Scholar 

  45. Guo, X., Chen, Y., Cao, L., Zhang, D., & Jiang, Y. (2020). A receiver-forwarding decision scheme based on Bayesian for NDN-VANET. China Communications, 17(8), 106–120. https://doi.org/10.23919/JCC.2020.08.009

    Article  Google Scholar 

  46. Sun, G., Zhang, Y., Yu, H., Du, X., & Guizani, M. (2020). Intersection fog-based distributed routing for V2V communication in urban vehicular Ad Hoc networks. IEEE Transactions on Intelligent Transportation Systems, 21(6), 2409–2426. https://doi.org/10.1109/TITS.2019.2918255

    Article  Google Scholar 

  47. Xu, C., Xiong, Z., Kong, X., Zhao, G., & Yu, S. (2020). A packet reception probability-based reliable routing protocol for 3D VANET. IEEE Wireless Communications Letters, 9(4), 495–498. https://doi.org/10.1109/LWC.2019.2960236

    Article  Google Scholar 

  48. Mershad, K. (2020). SURFER: A secure SDN-based routing protocol for internet of vehicles. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2020.3038465 (Early Access).

    Article  Google Scholar 

  49. Al-Kharasani, N. M., Zukarnain, Z. A., Subramaniam, S. K., & Hanapi, Z. M. (2020). An adaptive relay selection scheme for enhancing network stability in VANETs. IEEE Access, 8, 128757–128765. https://doi.org/10.1109/ACCESS.2020.2974105

    Article  Google Scholar 

  50. Chaib, N., Oubbati, O. S., Bensaad, M. L., Lakas, A., Lorenz, P., & Jamalipour, A. (2020). BRT: Bus-based routing technique in urban vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 21(11), 4550–4562. https://doi.org/10.1109/TITS.2019.2938871

    Article  Google Scholar 

  51. Liu, C., Zhang, G., Guo, W., & He, R. (2020). Kalman prediction-based neighbor discovery and its effect on routing protocol in vehicular Ad Hoc networks. IEEE Transactions on Intelligent Transportation Systems, 21(1), 159–169. https://doi.org/10.1109/TITS.2018.2889923

    Article  Google Scholar 

  52. Deng, Z., Cai, Z., & Liang, M. (2020). A multi-Hop VANETs-assisted offloading strategy in vehicular mobile edge computing. IEEE Access, 8, 53062–53071. https://doi.org/10.1109/ACCESS.2020.2981501

    Article  Google Scholar 

  53. Shen, J., Liu, D., Chen, X., Li, J., Kumar, N., & Vijayakumar, P. (2020). Secure real-time traffic data aggregation with batch verification for vehicular cloud in VANETs. IEEE Transactions on Vehicular Technology, 69(1), 807–817. https://doi.org/10.1109/TVT.2019.2946935

    Article  Google Scholar 

  54. Fatemidokht, H., Rafsanjani, M. K., Gupta, B. B., & Hsu, C.-H. (2021). Efficient and secure routing protocol based on artificial intelligence algorithms with uav-assisted for vehicular Ad Hoc networks in intelligent transportation systems. IEEE Transactions on Intelligent Transportation Systems (Early Access). https://doi.org/10.1109/TITS.2020.3041746

    Article  Google Scholar 

  55. Ma, C., Zhu, J., Liu, M., Zhao, H., Liu, N., & Zou, X. (2021). Parking edge computing: parked-vehicle-assisted task offloading for urban VANETs. IEEE Internet of Things Journal, 8(11), 9344–9358. https://doi.org/10.1109/JIOT.2021.3056396

    Article  Google Scholar 

  56. Zhang, Y., Zhang, L., Ni, D., Choo, K.-K.R., & Kang, B. (2021). Secure, robust and flexible cooperative downloading scheme for highway VANETs. IEEE Access, 9, 5199–5211. https://doi.org/10.1109/ACCESS.2020.3048273

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editorial Board and reviewers who have contributed many valuable and profound comments to help our research team enhance the quality of this work. We also sincerely thank Hung Yen University of Technology and Education supported for this research.

Author information

Authors and Affiliations

Authors

Contributions

We have conducted the research, analysed the data, and performed simulations together. All authors have approved the final version. Corresponding Author is Vu Khanh Quy.

Corresponding author

Correspondence to Vu Khanh Quy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 3.

Table 3 Acronyms used in the survey and definations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quy, V.K., Nam, V.H., Linh, D.M. et al. Communication Solutions for Vehicle Ad-hoc Network in Smart Cities Environment: A Comprehensive Survey. Wireless Pers Commun 122, 2791–2815 (2022). https://doi.org/10.1007/s11277-021-09030-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09030-w

Keywords

Navigation