Skip to main content
Log in

An Adaptive Neuro-Fuzzy Based Region Selection and Authenticating Medical Image Through Watermarking for Secure Communication

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Healthcare has experienced significant growth in recent years, bringing both advantages and downsides. It is more difficult to provide a precise diagnosis using digitally transmitted medical images in today's digital age. Using an adaptive neuro-fuzzy model and an integrated watermark transformation mechanism, this study proposes a new approach for watermarking medical images based on Region of interest (ROI). Isolating the ROI from the original medical image will be accomplished first using adaptive neuro-fuzzy training techniques. Second, as a consequence of wavelet decomposition, where subbands are exchanged using a logistic mapping based on the magnitude value of each subband, all pixels are exchanged, resulting in medical data that is encrypted and unbreakable. To make the watermark image more stable, singular values are computed, and major components are calculated to prevent false-positive mistakes. When the source and watermark images are changed to separate values, this key variable is used. Finally, through an adaptive authentication code, the scheme suggested tests the strength of protection. Moreover, the authentication code is integrated into the medical image with a new image scale-up process results in better security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cedillo-Hernandez, M., Cedillo-Hernandez, A., Nakano-Miyatake, M., & Perez-Meana, H. (2019). An enhanced hybrid image watermarking scheme for the security of medical and non-medical images based on DWT and 2-D SVD. Future Generation Computer Systems, 101, 1223–1246.

    Article  Google Scholar 

  2. Manikandan, V. M., & Masilamani, V. (2020). A novel image scaling based reversible watermarking scheme for secure medical image transmission. ISA Transactions. https://doi.org/10.1016/j.isatra.2020.08.019

    Article  Google Scholar 

  3. Rayachoti, E., Tirumalasetty, S., & Prathipat, S. C. (2020). SLT based watermarking system for secure telemedicine. Cluster Computing. https://doi.org/10.1007/s10586-020-03078-2

    Article  Google Scholar 

  4. Qasim, A. F., Meziane, F., & Aspin, R. (2018). Digital watermarking: applicability for developing trust in medical imaging workflows state of the art review. Computer Science Review, 27, 45–60.

    Article  MathSciNet  Google Scholar 

  5. BS, K. S. (2020). A fuzzy-based ROI selection for encryption and watermarking in the medical image using DWT and SVD. Multimed Tools Applied. https://doi.org/10.1007/s11042-020-09981-5

    Article  Google Scholar 

  6. Gangadhar, Y., Giridhar Akula, V. S., & Chenna Reddy, P. (2018). An evolutionary programming approach for securing medical images using the watermarking scheme in invariant discrete wavelet transformation. Biomedical Signal Processing and Control, 43, 31–40.

    Article  Google Scholar 

  7. Krishnasamy B., Balakrishnan M., Christopher A. (2021). A Genetic Algorithm Based Medical Image Watermarking for Improving Robustness and Fidelity in Wavelet Domain. In: Satapathy S., Zhang YD., Bhateja V., Majhi R. (eds) Intelligent Data Engineering and Analytics. Advances in Intelligent Systems and Computing, vol 1177. Springer, Singapore. https://doi.org/10.1007/978-981-15-5679-1_27.

  8. Favorskaya, M., Savchina, E., & Gusev, K. (2019). Feature-based synchronization correction for multilevel watermarking of medical images. Procedia Computer Science, 159, 1267–1276.

    Article  Google Scholar 

  9. Liu, X., Lou, J., & FangFangwang, H. H. L. (2019). A novel robust reversible watermarking scheme for protecting authenticity and integrity of medical images. IEEE Access, 7, 76580–76598.

    Article  Google Scholar 

  10. Balasamy, K., Krishnaraj, N., Ramprasath, J., & Ramprakash, P. (2021). A secure framework for protecting clinical data in medical IoT environment. Smart Healthcare System Design: Security and Privacy Aspects. https://doi.org/10.1002/9781119792253.ch9

    Article  Google Scholar 

  11. Mothi, R., & Karthikeyan, M. (2019). Protection of biomedical iris image using watermarking and cryptography with WPT. Measurement, 136, 67–73.

    Article  Google Scholar 

  12. Balasamy, K., & Ramakrishnan, S. (2019). An intelligent reversible watermarking system for authenticating medical images using Wavelet and PSO. Cluster Computer, 22, 4431–4442. https://doi.org/10.1007/s10586-018-1991-8

    Article  Google Scholar 

  13. Keshavarzian, R., & Aghagolzadeh, A. (2016). ROI-based robust and secure image watermarking using DWT and Arnold map. International Journal of Electronics and Communication (AEU), 70, 278–288.

    Article  Google Scholar 

  14. Yang, Y., Zhang, W., Liang, D., & Yu, N. (2018). A ROI-based high capacity reversible data hiding scheme with contrast enhancement for medical images. Multimedia Tools Applications, 77, 18043–18065.

    Article  Google Scholar 

  15. Pan, W., Bouslimi, D., Karasad, M., Cozic, M., & Coatrieux, G. (2018). Imperceptible reversible watermarking of radiographic images based on quantum noise masking. Computer Methods and Programs in Biomedical, 160, 119–128.

    Article  Google Scholar 

  16. Campisi, P., Kundur, D., & Neri, A. (2004). Robust digital watermarking in the ridgelet domain. IEEE Signal Processing Letters, 11(10), 826–830.

    Article  Google Scholar 

  17. Ganic, E., & Eskicioglu, A. M. (2005). Robust embedding of visual watermarks using discrete wavelet transform and singular value decomposition. Journal of Electronic Imaging, 14(4), 043004–043004.

    Article  Google Scholar 

  18. Lin, S. D., & Chen, C. F. (2000). A robust DCT-based watermarking for copyright protection. IEEE Transactions on Consumer Electronics, 46(3), 415–421.

    Article  Google Scholar 

  19. Rastegar, S., Namazi, F., Yaghmaie, K., & Aliabadian, A. (2011). Hybrid watermarking algorithm based on singular value decomposition and radon transform. AEU-International Journal of Electronic Communication, 65(7), 658–663.

    Google Scholar 

  20. Praveen Bagadi, K., & Das, S. (2013). Efficient complex radial basis function model for multiuser detection in a space division multiple access/multiple-input multiple-output-orthogonal frequency division multiplexing system. IET Communications, 7(13), 1394–1404.

    Article  Google Scholar 

  21. Tsougenis, E. D., Papakostas, G. A., Koulouriotis, D. E., & Tourassis, V. D. (2012). Performance evaluation of moment-based watermarking methods: a review. Journal of Systems and Software, 85(8), 1864–1884.

    Article  Google Scholar 

  22. Praveen Bagadi, K., & Das, S. (2013). Neural network-based multiuser detection for SDMA-OFDM system over IEEE 802.11n indoor wireless local area network channel models. International Journal of Electronics, 100(10), 1332–1347.

    Article  Google Scholar 

  23. Zhang, X. (2011). Reversible data hiding in encrypted image. IEEE Signal Processing Letters, 18(4), 255–258. https://doi.org/10.1109/LSP.2011.2114651

    Article  Google Scholar 

  24. Acharya, U. R., Deepthi, A., Bhat, P. S., & Niranjan, U. C. (2001). Compact storage of medical images with patient information. IEEE Transactions on Information Technology in Biomedicine, 5(4), 320–323.

    Article  Google Scholar 

  25. Ramprasath, J., & Seethalakshmi, V. (2021). Improved Network Monitoring Using Software-Defined Networking for DDoS Detection and Mitigation Evaluation. Wireless Personal Communications, 116, 2743–2757. https://doi.org/10.1007/s11277-020-08042-2

    Article  Google Scholar 

  26. Wakatani, A. (2002) Digital watermarking for ROI medical images by using a compressed signature image, in Proceedings of the Annual Hawaii International Conference System Sciences, p. 157–163.

  27. Chao, H. M., Hsu, C. M., & Miaou, S. G. (2002). A data-hiding technique with authentication, integration, and confidentiality for electronic patient records. IEEE Transactions on Information Technology in Biomedicine, 6(1), 46–53.

    Article  Google Scholar 

  28. Acharya, U. R., Bhat, P. S., Kumar, S., & Min, L. C. (2003). Transmission and storage of medical images with patient information. Computer in Biology and Medicine, 33(4), 303–310.

    Article  Google Scholar 

  29. Xuanwen, L., Qiang, C., Tan, J. (2003). A lossless data embedding scheme for medical images in the application of e-diagnosis, in Proceedings of the 25th Annual International Conference of the IEEE EMBS, p. 852–855.

  30. Acharya, U. R., Niranjan, U. C., Iyengar, S. S., Kannathal, N., & Min, L. C. (2004). Simultaneous storage of patient information with medical images in the frequency domain. Computer Methods and Programs in Biomedicine, 76, 13–19.

    Article  Google Scholar 

  31. Praveen Bagadi, K., & Das, S. (2013). Neural network-based adaptive multiuser detection schemes in SDMA-OFDM system for wireless application. Neural Computing and Applications, 23(3–4), 1071–1082.

    Article  Google Scholar 

  32. Ramprasath, J., Ramakrishnan, S., SaravanaPerumal, P., Sivaprakasam, M., & ManokaranVishnuraj, U. (2016). Secure network implementation using VLAN and ACL. International Journal of Advanced Engineering Research and Science, 3(1), 2349–6495.

    Google Scholar 

  33. Zain, J.M., Baldwin, L.P., Clarke, M. (2004). Reversible watermarking for authentication of DICOM images, In Proceedings of the 26th Annual International Conference on IEEE EMBS, p. 3237–3240.

  34. Woo, C-S., Du, J., Pham B. (2005). Multiple watermark method for privacy control and tamper detection in medical images, in: Proceedings of the APRS Workshop on Digital Image Computing Pattern Recognition and Imaging for Medical Applications.

  35. Giakoumaki, A., Pavlopoulos, S., & Koutsouris, D. (2006). Multiple images watermarking applied to health information management. IEEE Transactions on Information Technology in Biomedicine, 10(4), 722–732.

    Article  Google Scholar 

  36. J.M. Zain, A.M. Fauzi, A.M., (2006). Medical image watermarking with tamper detection and recovery, In Proceedings of the 28th IEEE EMBS Annual International Conference, p 3270–3273.

  37. Wu, J. H. K., Chang, R. F., Chen, C. J., Wang, C. L., Kuo, T. H., Moon, W. K., & Chen, D. R. (2008). Tamper detection and recovery for medical images using near-lossless information hiding technique. Journal of Digital Imaging, 21(1), 59–76.

    Article  Google Scholar 

  38. Guo, X., & Zhuang, T. (2009). A region-based lossless watermarking scheme for enhancing the security of medical data. Journal of Digital Imaging, 22(1), 53–64.

    Article  Google Scholar 

  39. Guo, X., & Zhuang, T. (2009). Lossless watermarking for verifying the integrity of medical images with tamper localization. Journal of Digital Imaging, 22(6), 620–628.

    Article  Google Scholar 

  40. Nambakhsh, M. S., Ahmadian, A., & Zaidi, H. (2011). A contextual based double watermarking of PET images by the patient ID and ECG signal. Computer Methods and Programs in Biomedicine, 104(3), 418–425.

    Article  Google Scholar 

  41. Ravi Kumar, C. V., & Bagadi, K. P. (2019). Design of MC-CDMA receiver using radial basis function network to mitigate multiple access interference and nonlinear distortion. Neural Computing and Applications. https://doi.org/10.1007/s00521-017-3127-0

    Article  Google Scholar 

  42. Ravi Kumar, C. V., & Bagadi, K. P. (2017). MC-CDMA receiver design using recurrent neural networks for eliminating multiple access interference and nonlinear distortion. International Journal of Communication System. https://doi.org/10.1002/dac.3328

    Article  Google Scholar 

  43. Ramprasath, J., & Seethalakshmi, V. (2021). Mitigation of malicious flooding in software defined networks using dynamic access control list. Wireless Personal Communications. https://doi.org/10.1007/s11277-021-08626-6

    Article  Google Scholar 

  44. Wershi, O. M. A., & Khoo, B. E. (2011). Authentication and data hiding using a hybrid ROI-based watermarking scheme for DICOM images. Journal of Digital Imaging, 24(1), 114–125.

    Article  Google Scholar 

  45. S. Das, S., Kundu, M.K. (2011). Hybrid contourlet-DCT based robust image watermarking technique applied to medical data management, In Proceedings of 4th International Conference on Pattern Recognition and Machine Intelligence, p. 286–292.

  46. Bouslimi, D., Coatrieux, G., & Roux, C. (2012). A joint encryption/watermarking algorithm for verifying the reliability of medical images: application to echographic images. Computer Methods and Programs in Biomedicine, 106(1), 47–54.

    Article  Google Scholar 

  47. Zhang, X., Wang, Z., Yu, J., Qian, Z. Reversible visible watermark embedded in encrypted domain. p. 826–30.

  48. Lavanya, A., & Natarajan, V. (2012). Watermarking patient data in encrypted medical images. Sadhana-Academy Proceedings in Engineering and Science, 37(6), 723–729.

    Google Scholar 

  49. Wu, H. T., Huang, J. W., & Shi, Y. Q. (2015). A reversible data hiding method with contrast enhancement for medical images. Journal of Visual Communication and Image Representation, 31, 146–153.

    Article  Google Scholar 

  50. Kundu, M.K., Das, S. (2010). Lossless ROI medical image watermarking technique with enhanced security and high payload embedding, In Proceedings of 2010 Int. Conf. on Pattern Recognition, IEEE Computer Society, p. 1457–1460.

  51. Tan, C. K., Ng, J. C., Xu, X. T., et al. (2011). Security protection of DICOM medical images using dual-layer reversible watermarking with tamper detection capability. J. Digit. Imag., 24(3), 528–540.

    Article  Google Scholar 

  52. Liu, Y. L., Qu, X. X., & Xin, G. J. (2015). ROI-based reversible data hiding scheme for medical images with tamper detection. IEICE Transaction on Information and System, E98.D(4), 769–774.

    Article  Google Scholar 

  53. Ahmed, M. N., Yamany, S. M., Mohamed, N., Farag, A. A., & Moriarty, T. (2012). A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Transactions on Medical Imaging, 21, 193–199.

    Article  Google Scholar 

  54. Ramakrishnan, S., Gopalakrishnan, T., & Balasamy, K. (2011). SVD based robust digital watermarking for still images using wavelet transform, CCSEA 2011. CS IT, 02, 155–167.

    Google Scholar 

  55. Lim, J. S. (2010). Two-Dimensional Signal, and Image Processing. Prentice Hall.

    Google Scholar 

  56. Laws, K. I. (2011). Textured image segmentation. University of Southern California.

    Google Scholar 

  57. Ramprasath, J., & Seethalakshmi, V. (2020). Secure access of resources in software-defined networks using dynamic access control list. International Journal of Communication Systems. https://doi.org/10.1002/dac.4607

    Article  Google Scholar 

  58. Krishnaraj, N., & Smys, S. (2019). A multihoming ACO-MDV routing for maximum power efficiency in an IoT environment. Wireless Personal Communications, 109(1), 243–256.

    Article  Google Scholar 

  59. Sakthivadivel, M., Krishnaraj, N., & Ramprakash, P. (2013). Utilization of big data in oil and gas industries using Hadoop MapReduce technology and HiveQL. Global Journal of Multidisciplinary and Applied Sciences, 1(2), 52–57.

    Google Scholar 

  60. Krishnaraj, N., Kumar, R.B., Rajeshwar, D., Kumar, T.S. (2020). Implementation of Energy-Aware Modified Distance Vector Routing Protocol for Energy Efficiency in Wireless Sensor Networks, IEEE International Conference on Inventive Computation Technologies, p. 201–204.

  61. Ramprakash, P., Sakthivadivel, M., Krishnaraj, N., & Ramprasath, J. (2014). Host-based intrusion detection system using sequence of system calls. International Journal of Engineering and Management Research, Vandana Publications, 4(2), 241–247.

    Google Scholar 

  62. https://www.med.upenn.edu/sbia/brats2018/data.html

  63. https://luna16.grand-challenge.org/Data/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Krishnaraj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balasamy, K., Krishnaraj, N. & Vijayalakshmi, K. An Adaptive Neuro-Fuzzy Based Region Selection and Authenticating Medical Image Through Watermarking for Secure Communication. Wireless Pers Commun 122, 2817–2837 (2022). https://doi.org/10.1007/s11277-021-09031-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09031-9

Keywords

Navigation