Abstract
Towards enabling 5G and beyond radio access technologies to meet the requirements for continuous dynamic and diverse services, flexibility and scalability of the cellular network are of utmost important. In part, the revolution in information technology is craving way to the realization of the desired flexibility and scalability through advancement in softwarization and virtualization technologies. To this end, radio access networks (RAN) can be softwarized by employing appropriate virtualization techniques and open-source platforms to develop prototypes, which can be directed at fostering further mobile network research activities. In this paper, we provide a review of OpenAirInterface (OAI) implementation and present an OAI based cloud RAN (C-RAN) testbed with which mobile fronthaul (MFH) solutions can be tested. Furthermore, transmission of real-time radio signals over a passive optical network (RFoPON) is demonstrated. While successful transmission is achieved, the preliminary results show that the performance of C-RAN is limited by the delay overhead requirement of the passive optical network.
Similar content being viewed by others
Availability of data and material
Not applicable
References
Gilson, M., Mackenzie, R., Sutton, A., & Huang, J. (2018). NGMN Overview on 5G RAN Functional Decomposition by NGMN Alliance. Technical report, Next Generation Mobile Networks Ltd, [Online; Accessed 2021-04-20]
Chabbouh, O., Rejeb, S., Agoulmine, N., & Choukair, Z. (2017). Cloud ran architecture model based upon flexible ran functionalities split for 5g networks. In: Proceedings of the 2017 31st International Conference on Advanced Information Networking and Applications: Workshops (WAINA), IEEE Computer Society, Los Alamitos, CA, USA, pp. 184–188, https://doi.org/10.1109/WAINA.2017.107, https://doi.ieeecomputersociety.org/10.1109/WAINA.2017.107
Zeng, D., Zhang, J., Gu, L., Guo, S., & Luo, J. (2018). Energy-efficient coordinated multipoint scheduling in green cloud radio access network. IEEE Transactions on Vehicular Technology, 67(10), 9922–9930. https://doi.org/10.1109/TVT.2018.2863246
Larsen, L. M. P., Checko, A., & Christiansen, H. L. (2019). A Survey of the Functional Splits Proposed for 5G Mobile Crosshaul Networks. IEEE Communications Surveys Tutorials, 21(1), 146–172. https://doi.org/10.1109/COMST.2018.2868805
TSGR. (2018). TS 138 401 - V15.2.0 - 5G; NG-RAN; Architecture description (3GPP TS 38.401 version 15.2.0 Release 15). Technical report, 3rd Generation Partnership Project. https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
Zanferrari, M.F., André da Costa, C., Alberti, A. M., Bonato, B.C., & da Rosa, R.R. (2020). When sdn meets c-ran: A survey exploring multi-point coordination, interference, and performance. Journal of Network and Computer Applications, 162(102), 655. https://doi.org/10.1016/j.jnca.2020.102655,http://www.sciencedirect.com/science/article/pii/S1084804520301296
Ding, A. Y., Crowcroft, J., Tarkoma, S., & Flinck, H. (2014). Software defined networking for security enhancement in wireless mobile networks. Computer Networks, 66, 94–101. https://doi.org/10.1016/j.comnet.2014.03.009,http://www.sciencedirect.com/science/article/pii/S1389128614001133, n Leonard Kleinrock Tribute Issue: A Collection of Papers by his Students
Khan Tayyaba, S., & Shah, M. A. (2017). 5G cellular network integration with SDN: Challenges, issues and beyond. In: Proceedings of the 2017 International Conference on Communication, Computing and Digital Systems (C-CODE), pp. 48–53
Özbek, B., Aydoǧmuş, Y., Ulaş, A., & Görkemli, B. (2019). Joint routing and resource allocation for software defined mobile networks. In: Proceedings of the 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1–6
Martínez, R., Mayoral, A., Vilalta, R., Casellas, R., Noz R. M., Pachnicke S., Szyrkowiec T., & Autenrieth A. (2017). Integrated sdn/nfv orchestration for the dynamic deployment of mobile virtual backhaul networks over a multilayer (packet/optical) aggregation infrastructure. Journal of Optimal Communication Network, 9(2), A135–A142. https://doi.org/10.1364/JOCN.9.00A135,http://jocn.osa.org/abstract.cfm?URI=jocn-9-2-A135
Afolabi, I., Taleb, T., Samdanis, K., Ksentini, A., & Flinck, H. (2018). Network slicing and softwarization: A survey on principles, enabling technologies, and solutions. IEEE Communications Surveys Tutorials, 20(3), 2429–2453.
Bertz, L., & Pankajakshan, B. (2019). The Status of Open Source for 5G. Technical report, 5G Americas, https://www.5gamericas.org/the-status-of-open-source-for-5g/
ORAN Alliance. (2020). Open and Intelligent Software for the Radio Access Networks. https://www.o-ran.org/software, [Online; Accessed 2021-04-20]
OAISA. (2020). The open-air-interface project. https://gitlab.eurecom.fr/oai/openairinterface5g/-/wikis/home, Accessed on 2021-04-26
3GPP Technical Specifications Groups. (2018). Submission of initial 5G description for IMT-2020. http://www.3gpp.org/NEWS-EVENTS/3GPP-NEWS/1937-5G_DESCRIPTION
Nikaein, N., Marina, M. K., Manickam, S., Dawson, A., Knopp, R., & Bonnet, C. (2014). Openairinterface: A flexible platform for 5g research. SIGCOMM Computer Communication Review, 44(5), 33–38. https://doi.org/10.1145/2677046.2677053.
Craik G. (2019). Network Transformation; (Orchestration, Network and Service Management Framework) Network Transformation; (Orchestration, Network and Service Management Framework) 3. Technical report, European Telecommunications Standards Institute, [Online; Accessed 2021-04-20]
Bouali, L., Abd-Elrahman, E., Afifi, H., Bouzefrane, S., & Daoui, M. (2016). Virtualization techniques: Challenges and opportunities. In S. Boumerdassi, É. Renault, & S. Bouzefrane (Eds.), Mobile, Secure, and Programmable Networking (pp. 49–62). Cham: Springer International Publishing.
Ageyev D., Bondarenko O., Radivilova T., & Alfroukh W. (2018). Classification of existing virtualization methods used in telecommunication networks. In: Proceeding of the 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT), pp. 83–86, https://doi.org/10.1109/DESSERT.2018.8409104
Mavridis I., & Karatza H. (2019). Lightweight virtualization approaches for software-defined systems and cloud computing: An evaluation of unikernels and containers. In: Proceedings of the 2019 Sixth International Conference on Software Defined Systems (SDS), pp. 171–178, https://doi.org/10.1109/SDS.2019.8768586
Potdar A.M., Kengond S., & Mulla M. M. (2020). Performance evaluation of docker container and virtual machine. Procedia Computer Science 171, 1419–1428, https://doi.org/10.1016/j.procs.2020.04.152, https://www.sciencedirect.com/science/article/pii/S1877050920311315, third International Conference on Computing and Network Communications (CoCoNet’19)
Bonati, L., Polese, M., DOro, S., Basagni, S., & Melodia, T. (2020). Open, programmable, and virtualized 5g networks: State-of-the-art and the road ahead. Computer Networks, 182(107), 516. https://doi.org/10.1016/j.comnet.2020.107516,https://www.sciencedirect.com/science/article/pii/S1389128620311786
Zhou, Q., & Jiang, W. (2021). Implementation of openairinterface-based real-world channel measurement for evaluating wireless transmission algorithms. 2101.04608
Kaltenberger, F., Silva, A. P., Gosain, A., Wang, L., & Nguyen, T. T. (2020). OpenAirInterface: Democratizing innovation in the 5G Era. Computer Networks, 176(107), 284. https://doi.org/10.1016/j.comnet.2020.107284,https://doi.org/10.1016/j.comnet.2020.107284
Kaltenberger, F., Souza, G. D., Knopp, R., & Wang, H. (2019). The openairinterface 5g new radio implementation: Current status and roadmap. In: WSA 2019; 23rd International ITG Workshop on Smart Antennas, pp. 1–5
Pawar, U., Singh, A. K., Malde, K., Tamma, B. R., & Antony Franklin, A. (2020). Understanding energy consumption of cloud radio access networks: an experimental study. In: Proceedings of the 2020 IEEE 3rd 5G World Forum (5GWF), pp. 407–412, https://doi.org/10.1109/5GWF49715.2020.9221114
Lin, P.-C., & Huang, S.-L. (2018). Performance profiling of cloud radio access networks using openairinterface. In: Proceedings of the 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 454–458, https://doi.org/10.23919/APSIPA.2018.8659532
Manco, J., Baños, G. G., Härri, J., & Sepulcre, M. (2020). Prototyping v2x applications in large-scale scenarios using openairinterface. In: Proceedings of the 2020 IEEE Vehicular Networking Conference (VNC), pp. 1–4, https://doi.org/10.1109/VNC51378.2020.9318327
Kaltenberger, F., Roux, C., Buczkowski, M., & Wewior, M. (2016). The openairinterface application programming interface for schedulers using carrier aggregation. In: proceedings of the 2016 International Symposium on Wireless Communication Systems (ISWCS), pp. 497–500, https://doi.org/10.1109/ISWCS.2016.7600955
Mai, S., & Liu, Y. (2019). Implementation of web ar applications with fog radio access networks based on openairinterface platform. In: Proceedings of the 2019 5th International Conference on Control, Automation and Robotics (ICCAR), pp. 639–643, https://doi.org/10.1109/ICCAR.2019.8813710
Lu, Z., Hu, Z., Han, Z., Wang, L., Knopp, R., & Zhang, Y. (2020). An artificial intelligence enabled f-ran testbed. IEEE Wireless Communications, 27(2), 65–71. https://doi.org/10.1109/MWC.001.1900386
Shorov, A. (2019). 5g testbed development for network slicing evaluation. In: Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pp. 39–44, https://doi.org/10.1109/EIConRus.2019.8656861
Chen, S., Lee, C.-N., & Lee, M.-F. (2020). Realization of 5g network slicing using open source softwares. In: Proceedings of the 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 1549–1556
Wiranata, F. A., Shalannanda, W., Mulyawan, R., & Adiono, T. (2020). Automation of virtualized 5g infrastructure using mosaic 5g operator over kubernetes supporting network slicing. In: Proceedings of the 2020 14th International Conference on Telecommunication Systems, Services, and Applications (TSSA), pp. 1–5. https://doi.org/10.1109/TSSA51342.2020.9310895
3GPP. (2017). Technical specification group radio access network; study on cu-du lower layer split for nr; (release 15). Technical report, 3rd Generation Partnership Project, [Online; Accessed 2021-04-21]
Monteiro, P. P., & Gameiro, A. (2016). Opportunities in 5G Networks. CRC Press, Florida, USA, chap Convergence of Optical and Wireless Technologies for, 5G, pp. 179–215.
Mufutau, A. O., Guiomar, F. P., Fernandes, M. A., Lorences-Riesgo, A., Oliveira, A., & Monteiro, P. P. (2020). Demonstration of a hybrid optical fiber-wireless 5g fronthaul coexisting with end-to-end 4g networks. IEEE/OSA Journal of Optical Communications and Networking, 12(3), 72–78. https://doi.org/10.1364/JOCN.382654
Zaouga, A., de Sousa, A. F., Najjar, M., & Monteiro, P. P. (2021). Self-adjusting dba algorithm for next generation pons (ng-pons) to support 5g fronthaul and data services. Journal of Lightwave Technology, 39(7), 1913–1924. https://doi.org/10.1109/JLT.2020.3044704
ORCIP. (2021). Optical Radio Convergence Infrastructure for Communications and Power Delivering. https://orcip.pt/, Accessed on 2021-04-26
TSGR. (2018). TS 138 104 - V15.3.0 - 5G; NR; Base Station (BS) radio transmission and reception (3GPP TS 38.104 version 15.3.0 Release 15). Technical report, 3rd Generation Partnership Project, [Online; Accessed on 2021-04-21]
Acknowledgements
This work is supported by the European Regional Development Fund (FEDER), through the Regional Operational Programme of Centre (CENTRO 2020) of the Portugal 2020 framework, provided by projects ORCIP (CENTRO-01-0145-FEDER-022141), 5GO (POCI-01-0247-FEDER-024539), SOCA (CENTRO-01-0145-FEDER-000010), Project, RETIOT (POCI-01-0145-FEDER-016432) and LandMark (POCI-01-0145-FEDER-031527).
Funding
The European Regional Development Fund (FEDER), through the Regional Operational Programme of Centre (CENTRO 2020) of the Portugal 2020 framework, provided by projects ORCIP (CENTRO-01-0145-FEDER-022141), 5GO (POCI-01-0247-FEDER-024539), SOCA (CENTRO-01-0145-FEDER-000010), Project, RETIOT (POCI-01-0145-FEDER-016432) and LandMark (POCI-01-0145-FEDER-031527)
Author information
Authors and Affiliations
Contributions
Not applicable
Corresponding author
Ethics declarations
Conflicts of interest/Competing interests
Not applicable
Code availability
Not applicable
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mufutau, A.O., Guiomar, F.P., Oliveira, A. et al. Software-Defined Radio Enabled Cloud Radio Access Network Implementation Using OpenAirInterface. Wireless Pers Commun 121, 1233–1253 (2021). https://doi.org/10.1007/s11277-021-09064-0
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-021-09064-0