Skip to main content
Log in

Multilevel Redundant Discrete Wavelet Transform (ML-RDWT) and Optimal Red Deer Algorithm (ORDA) Centred Approach to Mitigate the Effect of ICI, BER and CIR in a MIMO-OFDM System

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Nowadays, there is a great demand for ultra-high data rate (UHDR) transmission on most 5th generation wireless networks. In this concern, the multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) scheme is used on a large scale to achieve UHDR transmission with reduced inter-symbol interference (ISI) and inter-carrier interference (ICI). Discrete wavelet transform-based OFDM (DWT-OFDM) provides better orthogonality due to presence of orthogonal wavelets, which mitigates the effects caused by ISI and ICI. Also, it has extended bandwidth than the traditional OFDM systems. But a major drawback in this system is that it suffers from down sampling. The down-sampling effect reduces the actual size of the input bit streams. As a result, the system performance is degraded. For solving this problem, a multilevel redundant discrete wavelet transform (ML-RDWT) is used instead of DWT to achieve improved spectral performance. Here, complex down-sampling operation is eliminated. From the simulation outcomes, it is clearly viewed that effects caused by ICI, ISI and BER are mitigated by improving the performance of CIR. The proposed method employs optimal red deer algorithm (ORDA) to locate the optimized weights for the ICI cancellation system. This algorithm enhances the spectral efficiency by achieving high CIR with reduced BER, ISI and ICI. The BER in the proposed MIMO-ML-RDWT-OFDM-ORDA method is 68%, 76%, 38% and 75%, which is very low when compared to the BER in the existing techniques like MIMO-DWT-OFDM-RDA, MIMO-RNS-OFDM-PNMA, MIMO-OFDM-BMA and MIMO-OFDM-ICIMA. The ISI in the proposed method is 94%, 91%, 95% low when compared to the ISI in the existing techniques. The ICI in the proposed work is 71%, 57%, 73% and 86% low when compared to the ICI in the existing techniques. Therefore, the general performance of the proposed MIMO-ML-RDWT-OFDM-ORDA method is improved in an efficient way with less complexity, error rate and processing delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Ylioinas, J., & Juntti, M. (2008). Iterative joint detection, decoding, and channel estimation in turbo-coded MIMO-OFDM. IEEE Transactions on Vehicular Technology, 58(4), 1784–1796.

    Article  Google Scholar 

  2. Lu, B., Yue, G., & Wang, X. (2004). Performance analysis and design optimization of LDPC-coded MIMO OFDM systems. IEEE Transactions on signal processing, 52(2), 348–361.

    Article  MathSciNet  Google Scholar 

  3. Shahbaztabar, D., Alirezaee, S., Ahmadi, M., & Heydari, R. (2018). A MC-CDMA system based on orthogonal filter banks of wavelet transforms and partial combining. AEU-International Journal of Electronics and Communications, 94, 128–138.

  4. He, R., Li, Q., Ai, B., Geng, Y. L. A., Molisch, A. F., Kristem, V., & Yu, J. (2017). A kernel-power-density-based algorithm for channel multipath components clustering. IEEE Transactions on Wireless Communications, 16(11), 7138–7151.

    Article  Google Scholar 

  5. Fan, W., Carton, I., Kyosti, P., Karstensen, A., Jamsa, T., Gustafsson, M., & Pedersen, G. F. (2016). A step toward 5G in 2020: Low-cost OTA performance evaluation of massive MIMO base stations. IEEE Antennas and Propagation Magazine, 59(1), 38–47.

    Article  Google Scholar 

  6. Ai, B., Guan, K., He, R., Li, J., Li, G., He, D., & Huq, K. M. S. (2017). On indoor millimeter wave massive MIMO channels: Measurement and simulation. IEEE journal on selected areas in communications, 35(7), 1678–1690.

    Article  Google Scholar 

  7. Li, Y., Jiang, H., Yu, Y., & Du, S. (2016). Efficient inter-carrier interference cancellation transmissions for cooperative networks with frequency offsets. IET Communications, 10(18), 2575–2581.

    Article  Google Scholar 

  8. Ma, T. (2017). A new inter-carrier interference self-cancellation mapping scheme over fast time-varying fading channels. Electronics Letters, 53(21), 1433–1435.

    Article  Google Scholar 

  9. Maya, D. P., & Kandiyil, A. C. (2016). Blind inter carrier interference compensation in MIMO SC-IFDMA system using firefly algorithm. AEU-International Journal of Electronics and Communications, 70(6), 857–865.

    Article  Google Scholar 

  10. Ali, N., Youssef, M. I., & Tarrad, I. F. (2020). ICI reduction by parallel concatenated encoder using wavelet transforms. In Information and Communication Technology for Sustainable Development (pp. 415–421). Springer, Singapore.

  11. Sarowa, S., Kumar, N., Agrawal, S., & Sohi, B. S. (2020). Evolution of PAPR reduction techniques: A wavelet based OFDM approach. Wireless Personal Communications, 115(2), 1565–1588.

    Article  Google Scholar 

  12. Ayeswarya, R. (2019). Fractional wavelet transform based OFDM system with cancellation of ICI. Journal of Ambient Intelligence and Humanized Computing, 1–11.

  13. Dogani, A., Dourandish, A., Ghorbani, M., & Shahbazbegian, M. R. (2020). A hybrid meta-heuristic for a bi-objective stochastic optimization of urban water supply system. IEEE Access, 8, 135829–135843.

    Article  Google Scholar 

  14. Zhou, B., & He, Z. (2020). A material handling scheduling method for mixed-model automotive assembly lines based on an improved static kitting strategy. Computers & Industrial Engineering, 140, 106268.

    Article  Google Scholar 

  15. Hwang, T., Yang, C., Wu, G., Li, S., & Li, G. Y. (2008). OFDM and its wireless applications: A survey. IEEE transactions on Vehicular Technology, 58(4), 1673–1694.

    Article  Google Scholar 

  16. Liu, J., & Li, J. (2005). Turbo processing for an OFDM-based MIMO system. IEEE Transactions on Wireless Communications, 4(5), 1988–1993.

    Article  Google Scholar 

  17. Ganesh, R. S., Jayakumari, J., & Akhila, I. P. (2011). Channel estimation analysis in MIMO-OFDM wireless systems. In 2011 International Conference on Signal Processing, Communication, Computing and Networking Technologies (pp. 399–403). IEEE.

  18. Akhtman, J., & Hanzo, L. (2007). Advanced channel estimation for MIMO-OFDM in realistic channel conditions. In 2007 IEEE International Conference on Communications (pp. 2528–2533). IEEE.

  19. Qiao, X., Cai, Y., & Xu, Y. (2005). Joint iterative decision feedback channel estimation for turbo coded V-BLAST MIMO-OFDM systems. In IEEE International Symposium on Communications and Information Technology, 2005. ISCIT 2005. 2, 1384–1388. IEEE.

  20. Vidhya, K., & Kumar, K. S. (2014). An intelligent channel estimation approach for MIMO-OFDM systems using meta-heuristic optimization algorithm. Research Journal of Applied Sciences, Engineering and Technology, 7(19), 4079–4087.

    Article  Google Scholar 

  21. Gao, Z., Dai, L., Lu, Z., Yuen, C., & Wang, Z. (2014). Super-resolution sparse MIMO-OFDM channel estimation based on spatial and temporal correlations. IEEE communications letters, 18(7), 1266–1269.

    Article  Google Scholar 

  22. He, R., Ai, B., Stüber, G. L., Wang, G., & Zhong, Z. (2017). Geometrical-based modeling for millimeter-wave MIMO mobile-to-mobile channels. IEEE Transactions on Vehicular Technology, 67(4), 2848–2863.

    Article  Google Scholar 

  23. Guan, K., Ai, B., Fricke, A., He, D., Zhong, Z., Matolak, D. W., & Kürner, T. (2016). Excess propagation loss of semi-closed obstacles for inter/intra-device communications in the millimeter-wave range. Journal of Infrared, Millimeter, and Terahertz Waves, 37(7), 676–690.

    Article  Google Scholar 

  24. Barazzetta, M., Micheli, D., Bastianelli, L., Diamanti, R., Totta, M., Obino, P., & Primiani, V. M. (2017). A comparison between different reception diversity schemes of a 4G-LTE base station in reverberation chamber: A deployment in a live cellular network. IEEE Transactions on Electromagnetic Compatibility, 59(6), 2029–2037.

    Article  Google Scholar 

  25. Recanatini, R., Moglie, F., & Primiani, V. M. (2013). Performance and immunity evaluation of complete WLAN systems in a large reverberation chamber. IEEE transactions on electromagnetic compatibility, 55(5), 806–815.

    Article  Google Scholar 

  26. Mounika, N., Rani, M. D., Narayana, J. L., & Kalyani, M. N. L. (2019). ICI Cancellation in OFDM Systems Under Stanford University Interim Channel Model. Innovations in Electronics and Communication Engineering (pp. 241–248). Springer.

    Chapter  Google Scholar 

  27. Fathollahi-Fard, A. M., Hajiaghaei-Keshteli, M., & Tavakkoli-Moghaddam, R. (2020). Red deer algorithm (RDA): A new nature-inspired meta-heuristic. Soft Computing, 24, 1–29.

    Article  Google Scholar 

  28. Sharief, A. H., & Sairam, M. S. (2019). Performance analysis of MIMO-RDWT-OFDM system with optimal genetic algorithm. AEU-International Journal of Electronics and Communications, 111, 152912.

    Article  Google Scholar 

  29. Khalifa, M. A., Emam, A. E., & Youssef, M. I. (2019). ICI and PAPR enhancement in MIMO-OFDM system using RNS coding. In 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT) (pp. 7–12). IEEE.

  30. Nakamura, A., Otsubo, H., & Itami, M. (2018). A study on dual-polarized MIMO-ICI canceller with complexity reduction under mobile reception of OFDM signals. IEEE Transactions on Broadcasting, 65(3), 589–600.

    Article  Google Scholar 

  31. Lu, J., Chen, X., Liu, S., & Fan, P. (2017). Location-aware ICI reduction in MIMO-OFDM downlinks for high-speed railway communication systems. IEEE Transactions on Vehicular Technology, 67(4), 2958–2972.

    Article  Google Scholar 

  32. Hao, J., Wang, J., & Pan, C. (2016). Low complexity ICI mitigation for MIMO-OFDM in time-varying channels. IEEE Transactions on Broadcasting, 62(3), 727–735.

    Article  Google Scholar 

  33. Fowler, J. E. (2005). The redundant discrete wavelet transform and additive noise. IEEE Signal Processing Letters, 12(9), 629–632.

    Article  Google Scholar 

  34. Paek, M. J., Kim, W. C., Kim, M. Y., & Song, H. K. (2019). Spatial phase coding with CoMP for performance enhancement based on MIMO-OFDM in HetNet system. IEEE Access, 7, 62240–62250.

    Article  Google Scholar 

  35. Pham, T., Le-Ngoc, T., Woodward, G. K., & Martin, P. A. (2016). Channel estimation and data detection for insufficient cyclic prefix MIMO-OFDM. IEEE Transactions on Vehicular Technology, 66(6), 4756–4768.

    Article  Google Scholar 

  36. Hakobyan, G., & Yang, B. (2017). A novel intercarrier-interference free signal processing scheme for OFDM radar. IEEE Transactions on Vehicular Technology, 67(6), 5158–5167.

    Article  Google Scholar 

  37. Hussein, H. S., & Hagag, M. (2019). Optical MIMO-OFDM with fully generalized index-spatial LED modulation. IEEE Communications Letters, 23(9), 1556–1559.

    Article  Google Scholar 

  38. Raut, S. N., & Jalnekar, R. M. (2019). Hybrid optimisation for priority-based scheduling in multi-user STBC-MIMO-OFDM. IET Communications, 13(20), 3391–3400.

    Article  Google Scholar 

  39. Ali, W., Li, Y., Tanoli, S. A. K., & Raja, M. A. Z. (2020). Integrated swarming computing paradigm for efficient estimation of channel parameters in MIMO system. Wireless Personal Communications, 115(1), 77–102.

    Article  Google Scholar 

  40. Liu, H., Duan, Z., & Chen, C. (2020). Wind speed big data forecasting using time-variant multi-resolution ensemble model with clustering auto-encoder. Applied Energy, 280, 115975.

    Article  Google Scholar 

  41. Djebbar, F., & Abu-Ali, N. (2017). Lightweight noise resilient steganography scheme for Internet of Things. In GLOBECOM 2017–2017 IEEE Global Communications Conference (pp. 1–6). IEEE.

  42. Liu, X., Liu, Y., Wang, X., & Zhou, J. (2017). Application of communication OFDM waveform to SAR imaging. In 2017 IEEE Radar Conference (RadarConf) (pp. 1757–1760). IEEE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Nagarajan.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagarajan, K., Sophia, S. Multilevel Redundant Discrete Wavelet Transform (ML-RDWT) and Optimal Red Deer Algorithm (ORDA) Centred Approach to Mitigate the Effect of ICI, BER and CIR in a MIMO-OFDM System. Wireless Pers Commun 122, 3347–3370 (2022). https://doi.org/10.1007/s11277-021-09066-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09066-y

Keywords

Navigation