Skip to main content
Log in

RF-based Wireless Communication for Shallow Water Networks: Survey and Analysis

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In modern times, applications such as port security, navigation, tsunami alert, etc., need real-time data transfer in shallow waters. These applications require large data rates for multimedia communication between underwater nodes and base-station. Although wired networks provide large data rates, the wires would be an obstacle to moving objects in the water. Alternatively, wireless acoustic communication is used in deep water applications. Notably, in shallow water, radio frequency (RF) communication serves a higher data rate than acoustic but, suffers from less transmission range due to large attenuation. The objective of this research is to study the feasibility of RF propagation in shallow waters and analyze the requirements and challenges for RF-based shallow water wireless networks. A range enhancement technique for RF communication, multi-hop communication, is also surveyed and its challenges for shallow waters are discussed. In the oceans around the Indian subcontinent, the shallow water can be considered as a lossy-dielectric medium and the physical parameters affect the electrical properties. The conductivity of the water increases linearly with an increase in salinity and temperature though this rate is higher with the increase in salinity. The variation in conductivity, in turn, affects the attenuation and path loss. The path loss in Bay-of-Bengal is approximately 2% less than in the Arabian Sea which affects the performance of RF propagation. It is also observed that the RF communication range using a multi-hop technique can be increased up to 240 m in shallow water with a bit error rate of 10−2 at 1 Mbps data rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: research challenges. Ad Hoc Networks, 3(3), 257–279. https://doi.org/10.1016/j.adhoc.2005.01.004.

    Article  Google Scholar 

  2. Felemban, E., Shaikh, F. K., Qureshi, U. M., Sheikh, A. A., & Qaisar, S. B. (2015). Underwater Sensor Network Applications: A Comprehensive Survey. International Journal of Distributed Sensor Networks., 11(11), 896832. https://doi.org/10.1155/2015/896832

  3. Zhu, Q., Xiong, W., Liu, H., Zhu, Y., & Xie, G. (2016). A brief review of underwater electric current communication. In: IEEE 20th international conference on computer supported cooperative work in design (CSCWD). https://doi.org/10.1109/cscwd.2016.7566034

  4. Sozer, E. M., Stojanovic, M., & Proakis, J. G. (2000). Underwater acoustic networks. IEEE Journal of Oceanic Engineering, 25(1), 72–83. https://doi.org/10.1109/48.820738.

    Article  Google Scholar 

  5. Awan, K. M., Shah, P. A., Iqbal, K., Gillani, S., Ahmad, W., & Nam, Y. (2019). Underwater Wireless Sensor Networks: A Review of Recent Issues and Challenges. Wireless Communications and Mobile Computing 1–20. https://doi.org/10.1155/2019/6470359

  6. Demirors, E., Sklivanitis, G., Santagati, G. E., Melodia, T., & Batalama, S. N. (2018). A high-rate software-defined underwater acoustic modem with real-time adaptation capabilities. IEEE Access, 6, 18602–18615. https://doi.org/10.1109/access.2018.2815026.

    Article  Google Scholar 

  7. Zeng, Z., Fu, S., Zhang, H., Dong, Y., & Cheng, J. (2017). A survey of underwater optical wireless communications. IEEE Communications Surveys & Tutorials, 19(1), 204–238. https://doi.org/10.1109/comst.2016.2618841.

    Article  Google Scholar 

  8. Hanson, F., & Radic, S. (2008). High bandwidth underwater optical communication. Applied Optics, 47(2), 277. https://doi.org/10.1364/ao.47.000277.

    Article  Google Scholar 

  9. Akyildiz, I. F., Wang, P., & Sun, Z. (2015). Realizing underwater communication through magnetic induction. IEEE Communications Magazine, 53(11), 42–48. https://doi.org/10.1109/mcom.2015.7321970.

    Article  Google Scholar 

  10. Tyler, R. H., Sanford, T. B., & Unsworth, M. J. (1998). Propagation of electromagnetic fields in the coastal ocean with applications to underwater navigation and communication. Radio Science, 33(4), 967–987. https://doi.org/10.1029/98rs00748.

    Article  Google Scholar 

  11. Massaccesi, A., & Pirinoli, P. (2016). Analysis of underwater EM propagation for scuba diving communication systems. In: 10th European conference on antennas and propagation (EuCAP)https://doi.org/10.1109/eucap.2016.7481224

  12. Al-Shamma’a, A. I., Shaw, A., & Saman, S. (2004). Propagation of electromagnetic waves at MHz frequencies through seawater. IEEE Transactions on Antennas and Propagation 52(11), 2843–2849. https://doi.org/10.1109/tap.2004.834449

  13. Shaw, A., Al-Shamma’a, A., & i., Wylie, S. R., & Toal, D. (2006). Experimental investigations of electromagnetic wave propagation in seawater. European Microwave Conference. https://doi.org/10.1109/eumc.2006.281456

  14. Abdou, A. A., Shaw, A., Mason, A., Al-Shamma’a, A., Cullen, J., & Wylie, S. (2011). Electromagnetic (EM) wave propagation for the development of an underwater Wireless Sensor Network (WSN). 2011 IEEE SENSORS Proceedings https://doi.org/10.1109/icsens.2011.6127319

  15. Akka, M. A., & Sokullu, R. (2015). Channel modeling and analysis for wireless underground sensor networks in water medium using electromagnetic waves in the 300–700 MHz range. Wireless Personal Communications, 84(2), 1449–1468. https://doi.org/10.1007/s11277-015-2697-3.

    Article  Google Scholar 

  16. Park, D., Kwak, K., Kim, J., & Chung, W. K. (2016). 3D underwater localization scheme using EM wave attenuation with a depth sensor. In: 2016 IEEE international conference on robotics and automation (ICRA)https://doi.org/10.1109/icra.2016.7487422

  17. Bush, B. F., Tripp, V. K., & Naishadham, K. (2012). Practical modeling of radio wave propagation in shallow seawater. In: Proceedings of the 2012 IEEE international symposium on antennas and propagation. https://doi.org/10.1109/aps.2012.6348625

  18. Sendra, S., Lloret, J., Rodrigues, J. J. P. C., & Aguiar, J. M. (2013). Underwater wireless communications in freshwater at 2.4 GHz. IEEE Communications Letters, 17(9), 1794–1797. https://doi.org/10.1109/lcomm.2013.072313.131214.

    Article  Google Scholar 

  19. Zoksimovski, A., Sexton, D., Stojanovic, M., & Rappaport, C. (2015). Underwater electromagnetic communications using conduction–channel characterization. Ad Hoc Networks, 34, 42–51. https://doi.org/10.1016/j.adhoc.2015.01.017.

    Article  Google Scholar 

  20. Qureshi, U., Shaikh, F., Aziz, Z., Shah, S., Sheikh, A., Felemban, E., & Qaisar, S. (2016). RF path and absorption loss estimation for underwater wireless sensor networks in different water environments. Sensors, 16(6), 890. https://doi.org/10.3390/s16060890.

    Article  Google Scholar 

  21. Jimenez, E., Quintana, G., Mena, P., Dorta, P., Perez-Alvarez, I., Zazo, S., & Quevedo, E. (2016). Investigation on radio wave propagation in shallow seawater: Simulations and measurements. IEEE Third Underwater Communications and NetworkingConference (UComms) https://doi.org/10.1109/ucomms.2016.7583453

  22. Ganesh, P. S. S. P., & Venkataraman, H. (2019). RF-based multihop wireless communication for shallow underwater environment. In: 2019 International conference on wireless communications signal processing and networking (WiSPNET). https://doi.org/10.1109/wispnet45539.2019.9032810

  23. Pavan Ganesh, P. S. S., & Venkataraman, H. (2020). E-CRUSE: energy-based throughput analysis for cluster-based RF shallow underwater communication. IET Communications,14(15), 2544–2553. https://doi.org/10.1049/iet-com.2019.1294.

    Article  Google Scholar 

  24. Che, X., Wells, I., Dickers, G., Kear, P., & Gong, X. (2010). Re-evaluation of RF electromagnetic communication in underwater sensor networks. IEEE Communications Magazine., 48(12), 143–151. https://doi.org/10.1109/mcom.2010.5673085

    Article  Google Scholar 

  25. Mathew.N.O. Sadiku. . (2012). Principles of electromagnetics (p. 2012). India: Oxford University Press.

  26. Ellison, W., Balana, A., Delbos, G., Lamkaouchi, K., Eymard, L., Guillou, C., & Prigent, C. (1998). New permittivity measurements of seawater. Radio Science., 33(3), 639–648. https://doi.org/10.1029/97rs02223

    Article  Google Scholar 

  27. Stogryn, A. (1971). Equations for calculating the dielectric constant of saline water (Correspondence). IEEE Transactions on Microwave Theory and Techniques., 19(8), 733–736. https://doi.org/10.1109/tmtt.1971.1127617

    Article  Google Scholar 

  28. Lang, R., Zhou, Y., Utku, C., & Le Vine, D. (2016). Accurate measurements of the dielectric constant of seawater at L band. Radio Science 51(1), 2–24. https://doi.org/10.1002/2015rs005776

    Article  Google Scholar 

  29. Underwater RF modem video (2019). Accessed 2019-04-01. https://www.wfs-tech.com/product/seatooth-video/

  30. Underwater RF modem- pipelogger (2019). https://www.wfs-tech.com/product/seatooth-pipelogger-temperature-1608005l/. Accessed 2019-04-01.

  31. Underwater RF modem pipeloggerT1. (2019). Accessed 2019-04-01. https://www.wfs-tech.com/product/seatooth-pipelogger-t1-10-thermal-insulation-200m-1603009j/

  32. Underwater RF modem S100 (2019). https://www.wfs-tech.com/product/seatooth-s100-1000m-controller-system-1-1546003/. Accessed 2019-04-01.

  33. Underwater RF modem S400 (2019). https://www.wfs-tech.com/product/seatooth-s400-subsea-datalogger/. Accessed 2019-04-01.

  34. Underwater RF modem SMSS (2019). https://www.wfs-tech.com/product/seatooth-subsea-motion-sensing-system/. Accessed: 2019-04-01.

  35. Underwater RF modem Wips (2019). https://www.wfs-tech.com/product/seatooth-wireless-integrated-pressure-sensor-4000m-1603001j/. Accessed: 2019-04-01.

  36. Heidemann, J., Stojanovic, M., & Zorzi, M. (2012). Underwater sensor networks: Applications, advances and challenges. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences., 370(1958), 158–175. https://doi.org/10.1098/rsta.2011.0214

    Article  Google Scholar 

  37. Aboderin, O., Inacio, S. ., Santos, H. M., Pereira, M. R., Pessoa, L. M., & Salgado, H. M. (2016). Analysis of J-Pole antenna configurations for underwater communications. OCEANS 2016 MTS/IEEE Monterey. https://doi.org/10.1109/oceans.2016.7761402

  38. Sporer, M., Weigel, R., & Koelpin, A. (2014). Open-ended dielectric-filled waveguide antenna for underwater usage. In 2014 11th European radar conference https://doi.org/10.1109/eurad.2014.6991287

  39. Alvertos, K. N., Karagianni, E. A., Vardakis, K. D., Mpountas, T. K., & Kaklamani, D. I. (2017). Bow-tie antenna for underwater Wireless Sensor Networks. In 2017 International workshop on antenna technology: Small antennas, innovative structures, and applications (iWAT) https://doi.org/10.1109/iwat.2017.7915391

  40. Llamas, R. A., Niemeier, J. J., & Kruger, A. (2015). Curved spiral antennas for freshwater applications. In 2015 IEEE radio andwireless symposium (RWS). https://doi.org/10.1109/rws.2015.7129723

  41. Inacio, S. I., Pereira, M. R., Santos, H. M., Pessoa, L. M., Teixeira, F. B., Lopes, M. J., & Salgado, H. M. (2016). Dipole antenna for underwater radio communications. In 2016 IEEE third underwater communications and networking conference (UComms) https://doi.org/10.1109/ucomms.2016.7583457

  42. Deschamps de Paillette, T., Gaugue, A., Parlier, E., & Dardenne, S. (2017). Antenna design for underwater wireless telemetry systems. In 2017 11th European conference on antennas and propagation (EUCAP). https://doi.org/10.23919/eucap.2017.7928513

  43. Yingying, Z., Xia, L., & Shiliang, F. (2011). Deployment analysis in two-dimensional underwater acoustic wireless sensor networks. In 2011 IEEE International conference on signal processing, communications and computing (ICSPCC). https://doi.org/10.1109/icspcc.2011.6061819

  44. Ducrocq, T., Hauspie, M., Mitton, N., & Pizzi, S. (2014). On the impact of network topology on wireless sensor networks performances: Illustration with geographic routing. In 2014 28th International conference on advanced information networking and applications workshops. https://doi.org/10.1109/waina.2014.118

  45. Shams, R., Khan, F. H., Amir, M., Otero, P., & Poncela, J. (2020). Critical analysis of localization and time synchronization algorithms in underwater wireless sensor networks: Issues and challenges. Wireless Personal Communications. https://doi.org/10.1007/s11277-020-07233-1

  46. Ullah, I., Chen, J., Su, X., Esposito, C., & Choi, C. (2019). Localization and detection of targets in underwater wireless sensor using distance and angle based algorithms. IEEE Access., 7, 45693–45704. https://doi.org/10.1109/access.2019.2909133

    Article  Google Scholar 

  47. Kim, B. S., Park, H., Kim, K. H., Godfrey, D., & Kim, K. I. (2017). A survey on real-time communications in wireless sensor networks. Hindawi: Wireless communications and mobile computing.

    Book  Google Scholar 

  48. Zhang, Y., Xie, L., Chen, H., & Cui, J.-H. (2014). On the use of sliding LT code in underwater acoustic real-time data transfer with high propagation latency. 2014 Oceans - St. John’s.https://doi.org/10.1109/oceans.2014.7002982

  49. Jiang, S. (2018). On reliable data transfer in underwater acoustic networks: A survey from networking perspective. IEEE Communications Surveys & Tutorials., 20(2), 1036–1055. https://doi.org/10.1109/comst.2018.2793964

    Article  Google Scholar 

  50. Aimtongkham, P., Nguyen, T. G., & So-In, C. (2018). Congestion control and prediction schemes using fuzzy logic system with adaptive membership function in wireless sensor networks. Wireless Communications and Mobile Computing., 2018, 1–19. https://doi.org/10.1155/2018/6421717

    Article  Google Scholar 

  51. Cui, Jun-Hong., Kong, Jiejun, Gerla, M., & Zhou, Shengli. (2006). The challenges of building scalable mobile underwater wireless sensor networks for aquatic applications. IEEE Network., 20(3), 12–18. https://doi.org/10.1109/mnet.2006.1637927

    Article  Google Scholar 

  52. Guan, Q., Ji, F., Liu, Y., Yu, H., & Chen, W. (2019). Distance-vector-based opportunistic routing for underwater acoustic sensor networks. IEEE Internet of Things Journal., 6(2), 3831–3839. https://doi.org/10.1109/jiot.2019.2891910

    Article  Google Scholar 

  53. Roy, A., & Sarma, N. (2018). Effects of various factors on performance of MAC protocols for underwater wireless sensor networks. Materials Today: Proceedings., 5(1), 2263–2274. https://doi.org/10.1016/j.matpr.2017.09.228

    Article  Google Scholar 

  54. Fang, D., Li, Y., Huang, H., & Yin, L. (2010). A CSMA/CA-based MAC protocol for underwater acoustic networks. In 2010 International Conference on computational intelligence and software engineering https://doi.org/10.1109/wicom.2010.5601361

  55. Cheng, Xilin, Fengzhong, Qu., & Yang, Liuqing. (2011). Single carrier FDMA over underwater acoustic channels. In 2011 6th International ICST conference on communications and networking in China (CHINACOM). https://doi.org/10.1109/chinacom.2011.6158311

  56. Chen, K., Ma, M., Cheng, E., Yuan, F., & Su, W. (2014). A survey on MAC protocols for underwater wireless sensor networks. IEEE Communications Surveys & Tutorials., 16(3), 1433–1447. https://doi.org/10.1109/surv.2014.013014.00032

    Article  Google Scholar 

  57. Pompili, D., Melodia, T., & Akyildiz, I. F. (2009). A CDMA-based medium access control for underwater acoustic sensor networks. IEEE Transactions on Wireless Communications., 8(4), 1899–1909. https://doi.org/10.1109/twc.2009.080195

    Article  Google Scholar 

  58. Fan, G., Chen, H., Xie, L., & Wang, K. (2011). An improved CDMA-based MAC protocol for underwater acoustic wireless sensor networks. In 2011 7th international conference on wireless communications, networking and mobile computing. https://doi.org/10.1109/wicom.2011.6040323

  59. Alam, M. I. I., & Hossain, M. F. (2017). A TDMA based EM controlled multi-channel MAC protocol for underwater sensor networks. In 2017 International conference on electrical, computer and communication engineering (ECCE). https://doi.org/10.1109/ecace.2017.7912918

  60. Venkataraman, H., Kalyampudi, P., & Muntean, G.-M. (2010). CASHeW: Cluster-based adaptive scheme for multimedia delivery in heterogeneous wireless networks. Wireless Personal Communications., 62(3), 517–536. https://doi.org/10.1007/s11277-010-0067-8

    Article  Google Scholar 

  61. Abdel Hamid, S., Hassanein, H. S., & Takahara, G. (2013). Introduction to wireless multi-hop networks. Routing for wireless multi-hop networks. SpringerBriefs in Computer Science (pp. 1–9). New York: Springer. https://doi.org/10.1007/978-1-4614-6357-3_1

  62. Venkataraman, H., Gandhi, D., & Tomar, V. (2013). Multi-hop multi-band intelligent relay-based architecture for LTE-advanced multi-hop wireless cellular networks. Wireless Personal Communications., 75(1), 131–153. https://doi.org/10.1007/s11277-013-1352-0

    Article  Google Scholar 

  63. Che, X., Wells, I., Kear, P., Dickers, G., Gong, X., & Rhodes, M. (2009). A static multi-hop underwater wireless sensor network using RF electromagnetic communications. In 2009 29th IEEE international conference on distributed computing systems workshops. https://doi.org/10.1109/icdcsw.2009.36

  64. Che, X., Wells, I., Dickers, G., Kear, P., Gong, X., & Rhodes, M. (2009). Failure tolerance analysis of a small scale underwater sensor network with RF electromagnetic communications. In 2009 Third international conference on sensor technologies and applications. https://doi.org/10.1109/sensorcomm.2009.108

  65. Sagar, . (2006). A pocket notebook on the ocean with reference to the waters around India. National Institute of Oceanography. Report

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. S. Pavan Ganesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesh, P.S.S.P., Venkataraman, H. RF-based Wireless Communication for Shallow Water Networks: Survey and Analysis. Wireless Pers Commun 120, 3415–3441 (2021). https://doi.org/10.1007/s11277-021-09068-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09068-w

Keywords

Navigation