Skip to main content

Advertisement

Log in

A NOMA-Enabled Cellular Symbiotic Radio for mMTC

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Non-orthogonal multiple access (NOMA) scheme, potentially enabling high spectral efficiency, is one of the key technological innovations in the 5th generation (5G) cellular networks. The massive machine type communications (mMTC) service category of 5G supports ultra-dense deployment of connected devices with low-power and low data-rate requirements, and so it naturally supports internet-of-things (IoT) communications. Also, the ambient backscatter communications (BsC) holds potential for enabling energy-constrained IoT communications due to its extremely low power requirements. This work analyzes the downlink of a NOMA-enabled cellular system bundled with symbiotic radio-based mMTC. Closed-form expressions of the outage probability for the signal-to-interference and noise ratio (SINR) and the ergodic rate are derived for the symbiotic radio backscatter device as well as the primary cellular user. Several interesting use-cases of the proposed system model are discussed for future massive IoT and cell-free networks. The theoretical results presented are validated through numerical evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. International Telecommunication Union. (ITU). (2015). IMT traffic estimates for the years 2020 to 2030. Report ITU-R M. 2370-0, ITU-R Radiocommunication Sector of ITU.

  2. Anwar, A., Seet, B.-C., & Ding, Z. (2018). Non-orthogonal multiple access for ubiquitous wireless sensor networks. Sensors, 18(2), 516.

    Article  Google Scholar 

  3. Islam, S. M. R., Avazov, N., Dobre, O. A., & Kwak, K. (2017). Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys Tutorials, 19(2), 721–742.

    Article  Google Scholar 

  4. Benjebbour, A., Saito, Y., Kishiyama, Y., Li, A., Harada, A., & Nakamura, T. (2013). Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access. In: International symposium on intelligent signal processing and communication systems (pp. 770–774).

  5. Technical Specification Group Services and Systems Aspects. (2018). System Architecture for the 5G System; Stage 2, Releases 15, 3GPP. Tech. Rep. document 3GPP TS Jun., 23(501), V15.2.0.

  6. Nawaz, S. J., Sharma, S. K., Wyne, S., Patwary, M. N., & Asaduzzaman, M. (2019). uantum machine learning for 6G communication networks: State-of-the-art and vision for the future. IEEE Access, 7, 46317–46350.

    Article  Google Scholar 

  7. Patwary, M. N., Nawaz, S. J., Rahman, M. A., Sharma, S. K., Rashid, M. M., & Barnes, S. J. (2020). The potential short- and long-term disruptions and transformative impacts of 5G and beyond wireless networks: Lessons learnt from the development of a 5G testbed environment. IEEE Access, 8, 11352–11379.

    Article  Google Scholar 

  8. Nawaz, S. J., Sharma, S. K., Mansoor, B., Patwary, M. N., & Khan, N. M. (2021). Non-coherent and backscatter communications: Enabling ultra-massive connectivity in 6G wireless networks. IEEE Access, 9, 38144–38186.

    Article  Google Scholar 

  9. Lyu, B., Yang, Z., Gui, G., & Sari, H. (2017). Optimal time allocation in backscatter assisted wireless powered communication networks. Sensors, 17(6), 1258.

    Article  Google Scholar 

  10. Stockman, H. (1948). Communication by means of reflected power. Proceedings of the IRE, 36(10), 1196–1204.

    Article  Google Scholar 

  11. Long, R., Liang, Y., Guo, H., Yang, G., & Zhang, R. (2020). Symbiotic radio: A new communication paradigm for passive internet of things. IEEE Internet of Things Journal, 7(2), 1350–1363.

    Article  Google Scholar 

  12. Yang, Z., Ding, Z., Fan, P., & Karagiannidis, G. K. (2015). On the performance of non-orthogonal multiple access systems with partial channel information. IEEE Transactions on Communications, 64(2), 654–667.

    Article  Google Scholar 

  13. Saito, Y., Benjebbour, A., Kishiyama, Y., & Nakamura, T. (2013). System-level performance evaluation of downlink non-orthogonal multiple access (NOMA). In IEEE annual international symposium on personal, indoor, and mobile radio communications (pp. 611–615). IEEE.

  14. Ding, Z., Yang, Z., Fan, P., & Poor, H. V. (2014). On the performance of non-orthogonal multiple access in 5g systems with randomly deployed users. IEEE Signal Processing Letters, 21(12), 1501–1505.

    Article  Google Scholar 

  15. Dai, L., Wang, B., Yuan, Y., Han, S., Chih-Lin, I., & Wang, Z. (2015). Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Communications Magazine, 53(9), 74–81.

    Article  Google Scholar 

  16. Chen, Y., Wang, L., Ai, Y., Jiao, B., & Hanzo, L. (2017). Performance analysis of NOMA-SM in vehicle-to-vehicle massive mimo channels. IEEE Journal on Selected Areas in Communications, 35(12), 2653–2666.

    Article  Google Scholar 

  17. Sohail, M. F., Leow, C. Y., & Won, S. (2018). Non-orthogonal multiple access for unmanned aerial vehicle assisted communication. IEEE Access, 6, 22716–22727.

    Article  Google Scholar 

  18. Laneman, J. N., Tse, D. N., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information theory, 50(12), 3062–3080.

    Article  MathSciNet  Google Scholar 

  19. Kader, M. F., Shahab, M. B., & Shin, S. Y. (2017). Exploiting non-orthogonal multiple access in cooperative relay sharing. IEEE Communications Letters, 21(5), 1159–1162.

    Article  Google Scholar 

  20. Mao, Y., Clerckx, B., & Li, V. O. (2018). Rate-splitting multiple access for downlink communication systems: bridging, generalizing, and outperforming SDMA and NOMA. EURASIP Journal on Wireless Communications and Networking, 2018(1), 133.

    Article  Google Scholar 

  21. Kim, T. Y., & Kim, D. I. (2018). Novel sparse-coded ambient backscatter communication for massive IoT connectivity. Energies, 11(7), 1780.

    Article  Google Scholar 

  22. Yang, G., Zhang, Q., & Liang, Y.-C. (2018). Cooperative ambient backscatter communications for green internet-of-things. IEEE Internet of Things Journal, 5(2), 1116–1130.

    Article  Google Scholar 

  23. Memon, M. L., Saxena, N., Roy, A., & Shin, D. R. (2019). Backscatter communications: Inception of the battery-free era—A comprehensive survey. Electronics, 8(2), 129.

    Article  Google Scholar 

  24. Liu, W., Huang, K., Zhou, X., & Durrani, S. (2019). Next generation backscatter communication: Systems, techniques, and applications. EURASIP Journal on Wireless Communications and Networking, 2019(1), 1–11.

    Article  Google Scholar 

  25. Elbayoumi, M., Kamel, M., Hamouda, W., & Youssef, A. (2020). NOMA-assisted machine-type communications in UDN: State-of-the-Art and challenges. IEEE Communications Surveys & Tutorials, 22(2), 1276–1304.

    Article  Google Scholar 

  26. Xu, Y., Qin, Z., & Gui, G. (2020). Energy-efficient resource allocation for NOMA-based backscatter communications. TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.11697855.v1.

    Article  Google Scholar 

  27. Liao, Y., Yang, G., & Liang, Y.-C. (2020). Resource allocation in noma-enhanced full-duplex symbiotic radio networks. IEEE Access, 8, 22709–22720.

    Article  Google Scholar 

  28. Nazar, A. W., Hassan, S. A., Jung, H., Mahmood, A., & Gidlund, M. (2020). Performance analysis of backscatter communication systems with non-orthogonal multiple access in Nakagami fading channels. arXiv. Preprint. arXiv:2006.12160.

  29. Zhang, Q., Zhang, L., Liang, Y.-C., & Kam, P.-Y. (2019). Backscatter-NOMA: A symbiotic system of cellular and internet-of-things networks. IEEE Access, 7, 20000–20013.

    Article  Google Scholar 

  30. Gulfam, S. M., Nawaz, S. J., Ahmed, A., & Patwary, M. N. (2016). Analysis on multipath shape factors of air-to-ground radio communication channels. In IEEE wireless telecommunications symposium (pp. 1–5).

  31. Al-Abbasi, Z. Q., & So, D. K. (2016). User-pairing based non-orthogonal multiple access (noma) system. In IEEE vehicular technology conference (pp. 1–5). IEEE.

  32. Vaezi, M., Schober, R., Ding, Z., & Poor, H. V. (2019). Non-orthogonal multiple access: Common myths and critical questions. IEEE Wireless Communications, 26(5), 174–180.

    Article  Google Scholar 

  33. Gómez-Déniz, E., & Gómez-Déniz, L. (2013). A generalisation of the Rayleigh distribution with applications in wireless fading channels. Wireless Communications and Mobile Computing, 13(1), 85–94.

    Article  Google Scholar 

  34. Waseer, W. I., Nawaz, S. J., Gulfam, S. M., & Mughal, M. J. (2018). Second-order fading statistics of massive-MIMO vehicular radio communication channels. Transactions on Emerging Telecommunications Technologies, 29(10), e3487.

    Article  Google Scholar 

  35. Han, K., & Huang, K. (2017). Wirelessly powered backscatter communication networks: Modeling, coverage, and capacity. IEEE Transactions on Wireless Communications, 16(4), 2548–2561.

    Article  Google Scholar 

  36. Zhang, D., Mumtaz, S., & Huq, K. (2017). Chapter 2—SISO to mmWave massive MIMO. In S. Mumtaz, J. Rodriguez, & L. Dai (Eds.), mmWave massive MIMO—A paradigm for 5G (pp. 19–38). Academic Press.

    Chapter  Google Scholar 

  37. Gradshteyn, I. S., & Ryzhik, I. M. (2014). Table of integrals, series, and products. Academic Press.

    MATH  Google Scholar 

  38. Kummer, E. E. (1836). Über die hypergeometrische reihe. Journal für die Reine und Angewandte Mathematik, 1836(15), 39–83.

    Article  Google Scholar 

  39. Abramowitz, M., & Stegun, I. A. (1948). Handbook of mathematical functions with formulas, graphs, and mathematical tables. US Government printing office (Vol. 55).

  40. Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  41. Hoang, D. T., Niyato, D., Kim, D. I., Van Huynh, N., & Gong, S. (2020). Ambient backscatter communication networks. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  42. Cheng, H. V., Björnson, E., & Larsson, E. G. (2017). Optimal pilot and payload power control in single-cell massive mimo systems. IEEE Transactions on Signal Processing, 65(9), 2363–2378.

    Article  MathSciNet  Google Scholar 

  43. Akhlaghpasand, H., Björnson, E., & Razavizadeh, S. M. (2020). Jamming-robust uplink transmission for spatially correlated massive mimo systems. IEEE Transactions on Communications, 68(6), 3495–3504.

    Article  Google Scholar 

Download references

Acknowledgements

The first three authors would like to acknowledge the partial support received from the project 21-2180 (SRGP-R&D-HEC-19) by Higher Education Commission (HEC) of Pakistan.

Funding

The first three authors received partial support from Higher Education Commission (HEC) of Pakistan under the project 21-2180 (SRGP-R&D-HEC-19). The rest of the authors did not receive any financial support for conducting this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilal Muhammad.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

If \(f_{|h_{b_2}|^2}(h_{b_2}) = \frac{1}{\Gamma [m_{b_2}](\sigma _{b_2})^{m_{b_2}}}(h_{b_2})^{m_{b_2}-1}\exp {\Big [\frac{-h_{b_2}}{\sigma _{b_2}}}\Big ]\), and \(f_{|h_w|^2}(h_w) = \frac{1}{\Gamma [m_{w}](\sigma _{w})^{m_{w}}}(w)^{m_{w}-1}\exp {\Big [\frac{-h_w}{\sigma _{w}}}\Big ]\), then \(f_s(s)\) from (10) is evaluated as follows,

$$\begin{aligned} f_s(s)&{\mathop {=}\limits ^{(c)}}\int \limits _0^{+\infty } \frac{1}{w} \frac{(h_w)^{m_w-1}}{\Gamma [m_w](\sigma _{w})^{m_w}}\exp {\Big [\frac{-h_w}{\sigma _{w}}}\Big ] \frac{(\frac{s}{h_w})^{m_{b_2}-1}}{\Gamma [m_{b_2}](\sigma _{b_2})^{m_{b_2}}}\exp {\Big [\frac{-s}{h_w \sigma _{b_2}}}\Big ] \,\mathrm {d}h_w \\= & {} \frac{2 s^{m_{b_2}-1}\sigma _{b_2}^{-m_{b_2}}\sigma _w^{\frac{-m_w-m_{b_2}}{2}}}{\Gamma [m_{b_2}]\Gamma [m_w]}\left( \frac{\sigma _{b_2}}{s} \right) ^{\frac{m_{b_2}-m_w}{2}} K_{m_{b_2}-m_w}\left[ 2\sqrt{\frac{s}{\sigma _{b_2}\sigma _{w}}}\right] , \end{aligned}$$

where integral in (c) is evaluated using [37], and \(K_{(\cdot )}[\cdot ]\) is a modified Bessel function of the second kind [39] valued as \(K_{v}[z] = \int _0^{\infty } {\cos (t)}/{\left( t^2 + z^2 \right) ^{v+1/2}}\,\mathrm {d}t\).

Appendix B

If \(f_{|h_{b_1}|^2}(h_{b_1}) = \frac{1}{\Gamma [m_{b_1}](\sigma _{b_1})^{m_{b_1}}}(h_{b_1})^{m_{b_1}-1}\exp {\Big [\frac{-h_{b_1}}{\sigma _{b_1}}}\Big ]\), then by adopting the same approach used to find \(f_s(s)\) in Appendix A, the expression of \(f_{\hat{s}}(\hat{s})\) can also be obtained as follows,

$$\begin{aligned} f_{\hat{s}}(\hat{s}) = \frac{2 \hat{s}^{m_{b_1}-1}\sigma _{b_1}^{-m_{b_1}}\sigma _w^{\frac{-m_w-m_{b_1}}{2}}}{\Gamma [m_{b_1}]\Gamma [m_w]}\left( \frac{\sigma _{b_1}}{\hat{s}} \right) ^{\frac{m_{b_1}-m_w}{2}} K_{m_{b_1}-m_w}\left[ 2\sqrt{\frac{\hat{s}}{\sigma _{b_1}\sigma _{w}}}\right] . \end{aligned}$$

Appendix C

The expression in (29) can be evaluated as follows,

$$\begin{aligned} F_{\Phi }(\phi ) = \mathrm {Pr}\left\{ |h_\mathrm {U1}|^2 < \frac{(p |\eta |^2 \hat{s} + \sigma _\circ ^2) \phi }{\alpha p} \right\} = 1 - \underbrace{\mathrm {Pr}\left\{ |h_\mathrm {U1}|^2 \ge \frac{(p |\eta |^2 \hat{s} + \sigma _\circ ^2) \phi }{\alpha p} \right\} }_{:=\Delta }, \end{aligned}$$

where \(\Delta\) can be evaluated by adopting the same approach as used for evaluating (17). The final expression for \(F_{\Phi }(\phi )\) can thus be written as follows,

$$\begin{aligned} F_{\Phi }(\phi )= & {} 1 - \frac{\exp { \left[ \frac{\phi \sigma _\circ ^2}{\sigma _1 \alpha p} \right] }}{\Gamma [m_{b_1}]\Gamma [m_w]} \left( -\frac{\sigma _{b_1}\sigma _{w}|\eta |^2 \phi }{\sigma _1 \alpha }\right) ^{-m_w-m_{b_1}} \Bigg \{ \left( - \frac{\sigma _{b_1}\sigma _{w}|\eta |^2 \phi }{\sigma _1 \alpha }\right) ^{m_w} \Gamma [m_{b_1}]\Gamma [m_w-m_{b_1}] \\&\times \, {_1F_1}\left( m_{b_1};1+m_{b_1}-m_{w};-\frac{\sigma _1 \alpha }{\sigma _{b_1}\sigma _{w}|\eta |^2\phi }\right) + \left( -\frac{\sigma _{b_1}\sigma _{w}|\eta |^2 \phi }{\sigma _1 \alpha }\right) ^{m_{b_1}} \Gamma [m_{w}]\Gamma [m_{b_1}-m_w] \\&\times \, {_1F_1}\left( m_{w};1-m_{b_1}+m_{w};-\frac{\sigma _1 \alpha }{\sigma _{b_1}\sigma _{w}|\eta |^2\phi }\right) \Bigg \}. \end{aligned}$$

Appendix D

By adopting the same approach as applied for obtaining \(F_{\Phi }(\phi )\), the expression of \(F_{\Theta }(\theta )\) used in (33) can also be evaluated, which is given as follows,

$$\begin{aligned} F_{\Theta }(\theta )= & {} 1-\frac{\exp { \left[ \frac{\theta \sigma _\circ ^2}{\sigma _2p(1-\alpha -\alpha \theta )} \right] }}{\Gamma [m_{b_2}]\Gamma [m_w]} \left( \frac{\sigma _{b_2}\sigma _{w}|\eta |^2 \theta }{\sigma _2(1-\alpha -\alpha \theta )}\right) ^{-m_w-m_{b_2}} \Bigg \{ \left( \frac{\sigma _{b_2}\sigma _{w}|\eta |^2 \theta }{\sigma _2(1-\alpha -\alpha \theta )}\right) ^{m_w} \\&\times \, \Gamma [m_{b_2}]\Gamma [m_w-m_{b_2}]{_1F_1}\left( m_{b_2};1+m_{b_2}-m_{w};\frac{\sigma _2(1-\alpha -\alpha \theta )}{\sigma _{b_2}\sigma _{w}|\eta |^2\theta }\right) + \left( \frac{\sigma _{b_2}\sigma _{w}|\eta |^2 \theta }{\sigma _2(1-\alpha -\alpha \theta )}\right) ^{m_{b_2}} \\&\times \, \Gamma [m_{w}]\Gamma [m_{b_2}-m_w]{_1F_1}\left( m_{w};1-m_{b_2}+m_{w};\frac{\sigma _2(1-\alpha -\alpha \theta )}{\sigma _{b_2}\sigma _{w}|\eta |^2\theta }\right) \Bigg \}. \end{aligned}$$

Appendix E

The parameter \(\mathcal {Q}_1\) used in (36) can be expressed as follows,

$$\begin{aligned} \begin{array}{l} \displaystyle \mathcal {Q}_1 = \int _0^{\infty } (b)^{m_{b_1}-1} \exp {\left[ \frac{\sigma _\circ ^2}{p|\eta |^2 w b} - \frac{b}{\sigma _{b_1}} \right] } \mathrm {Ei}\left( -\frac{\sigma _\circ ^2}{p|\eta |^2 w b} \right) \,\mathrm {d}b. \end{array} \end{aligned}$$

By adapting the same approach used in (30), the expression for \(\mathcal {Q}_1\) can be written as follows,

$$\begin{aligned} \mathcal {Q}_1= & {} \int \limits _0^{E} (b)^{m_{b_1}-1} \exp {\left[ \frac{\sigma _\circ ^2}{p|\eta |^2 w b} - \frac{b}{\sigma _{b_1}} \right] } \mathrm {Ei}\left( -\frac{\sigma _\circ ^2}{p|\eta |^2 w b} \right) \,\mathrm {d}b\\&{\mathop {\approx }\limits ^{(d)}}\frac{\pi E}{2n} \sum _{i=1}^{n} \sqrt{1-b_i^2} \left( \frac{E}{2} (b_i + 1) \right) ^{m_{b_1}-1} \exp {\left[ \frac{2 \sigma _\circ ^2}{p|\eta |^2 w (b_i + 1) E} - \frac{E (b_i + 1)}{2\sigma _{b_1}} \right] } \\&\times \,\mathrm {Ei}\left( \frac{-2 \sigma _\circ ^2}{p|\eta |^2 w (b_i + 1) E} \right) , \end{aligned}$$

where (d) represents the application of Gauss–Chebyshev quadrature method.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, A., Nawaz, S.J., Ahmed, A. et al. A NOMA-Enabled Cellular Symbiotic Radio for mMTC. Wireless Pers Commun 122, 3545–3571 (2022). https://doi.org/10.1007/s11277-021-09100-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09100-z

Keywords