Skip to main content

Advertisement

Log in

Image Steganography Using Remainder Replacement, Adaptive QVD and QVC

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This research article reports a steganography method based on adaptive quotient value differencing (AQVD), quotient value correlation (QVC), and remainder replacement. It possesses two advantages, (i) avoids unused pixel blocks problem, and (ii) performs data integrity verification at the receiver. It accomplishes data camouflaging and retrieval on 3-by-3 disjoint pixel blocks. From a 3-by-3 size pixel block three new blocks are derived, (i) quotient (QT) block, (ii) middle bit (M) block and (iii) remainder (R) block. A quotient of the quotient block is decimal equivalent of six binary bits. AQVD procedure is enforced to hide data in 4 corner quotients of the quotient block. The top-middle and bottom-middle quotients are appraised as reference values for AQVD procedure. In left-middle, center, and right-middle quotients, QVC embedding procedure is plied for data camouflaging by using their respective top and below neighbors as reference values. The 7th bit forms the M block and the 8th bit (least significant bit) forms the R block. Secret bits are camouflaged in M block by bit substitution. The verification bits are computed from QT block and M block. The verification bits are stored at R block, so that at the receiver side the integrity of the pulled-out bits can be checked. The experimental results prove that the recorded HC and PSNR values are improved. Furthermore, regular-singular (RS) and pixel difference histogram (PDH) analyses could not detect this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Cheddad, A., Condell, J., Curran, K., & Kevitt, P. M. (2010). Digital image steganography: Survey and analysis of current methods. Signal Processing, 90, 727–752.

    Article  Google Scholar 

  2. Martin, A., Sapiro, G., & Seroussi, G. (2005). Is image steganography Natural? IEEE Transactions on Image Processing., 14(12), 2040–2050.

    Article  Google Scholar 

  3. Wu, D. C., & Tsai, W. H. (2003). A steganograhic method for images by pixel value differencing. Pattern Recognition Letters, 24(9), 1613–1626.

    Article  Google Scholar 

  4. Fridrich, J., Goljian, M., & Du, R. (2001). Detecting LSB Steganography in colour and gray-scale images. Magazine of IEEE Multimedia and Security, 8(4), 22–28.

    Article  Google Scholar 

  5. Zhang, X., & Wang, S. (2004). Vulnerability of pixel-value differencing steganography to histogram analysis and modification for enhanced security. Pattern Recognition Letters, 25, 331–339.

    Article  Google Scholar 

  6. Lee, Y. P., Lee, J. C., Chen, W. K., Chang, K. C., Su, I. J., & Chang, C. P. (2012). High-payload image hiding with quality recovery using tri-way pixel-value differencing. Information Sciences, 191, 214–225.

    Article  Google Scholar 

  7. Darabkh, K. A., Al-Dhamari, A. K., & Jafar, I. F. (2017). A new steganographic algorithm based on multi directional PVD and modified LSB. Journal of Information Technology and Control, 46(1), 16–36.

    Google Scholar 

  8. Pradhan, A., Sekhar, K. R., & Swain, G. (2016). Digital image steganography based on seven way pixel value differencing. Indian Journal of Science and Technology, 9(37), 1–11.

    Article  Google Scholar 

  9. Luo, W., Huang, F., & Huang, J. (2011). A more secure steganography based on adaptive pixel-value differencing scheme. Multimedia Tools and Applications, 52, 407–430.

    Article  Google Scholar 

  10. Swain, G. (2016). Adaptive pixel value differencing steganography using both vertical and horizontal edges. Multimedia Tools and Applications, 75, 13541–13556.

    Article  Google Scholar 

  11. Pradhan, A., Sekhar, K. R., & Swain, G. (2017). Adaptive PVD steganography using horizontal, vertical, and diagonal edges in six-pixel blocks. Security and Communication Networks, 2017, 1924618.

    Article  Google Scholar 

  12. Liao, X., Wen, Q. Y., & Zhang, J. (2011). A steganographic method for digital images with four-pixel differencing and modified LSB substitution. Journal of Visual Communication and Image Representation, 22(1), 1–8.

    Article  Google Scholar 

  13. Swain, G. (2014). Digital image steganography using nine-pixel differencing and modified LSB substitution. Indian Journal of Science and Technology, 7(9), 1444–1450.

    Article  Google Scholar 

  14. Wu, H. C., Wu, N. I., Tsai, C. S., & Hwang, M. S. (2005). Image steganographic scheme based on pixel-value differencing and LSB replacement methods. IEEE Proceedings Vision, Image and Signal Processing, 152(5), 611–615.

    Article  Google Scholar 

  15. Yang, C. H., Weng, C. Y., Wang, S. J., & Sun, H. M. (2010). Varied PVD+LSB evading programs to spatial domain in data embedding systems. The Journal of Systems and Software, 83(10), 1635–1643.

    Article  Google Scholar 

  16. Khodaei, M., & Faez, K. (2012). New adaptive steganographic method using least-significant-bit substitution and pixel-value differencing. IET Image Processing, 6(6), 677–686.

    Article  Google Scholar 

  17. Swain, G. (2016). A steganographic method combining LSB substitution and PVD in a block. Procedia Computer Science, 85, 39–44.

    Article  Google Scholar 

  18. Swain, G. (2018). Digital image steganography using eight-directional PVD against RS analysis and PDH analysis. Advances in Multimedia, 2018, 4847098.

    Article  Google Scholar 

  19. Wang, C. M., Wu, N. I., Tsai, C. S., & Hwang, M. S. (2008). A high quality steganographic method with pixel-value differencing and modulus function. The Journal of Systems and Software, 81, 150–158.

    Article  Google Scholar 

  20. Zhao, W., Jie, Z., Xin, L., & Qiaoyan, W. (2015). Data embedding based on pixel value differencing and modulus function using indeterminate equation. The Journal of China Universities of Posts and Telecommunications, 22(1), 95–100.

    Article  Google Scholar 

  21. Swain, G. (2019). Two new steganography techniques based on quotient value differencing with addition-subtraction logic and PVD with modulus function. Optik - International Journal for Light and Electron Optics, 180, 807–823.

    Article  Google Scholar 

  22. Yang, C. H., Weng, C. Y., Tso, H. K., & Wang, S. J. (2011). A data hiding scheme using the varieties of pixel-value differencing in multimedia images. The Journal of Systems and Software, 84, 669–678.

    Article  Google Scholar 

  23. Pradhan, A., Sekhar, K. R., & Swain, G. (2018). Digital image steganography using LSB substitution, PVD, and EMD. Mathematical Problems in Engineering, 2018, 1804953.

    Article  Google Scholar 

  24. Tang, W., Li, B., Luo, W., & Huang, J. (2016). Clustering steganographic modification directions for colour components. IEEE Signal Processing Letters, 23(2), 197–201.

    Article  Google Scholar 

  25. Li, B., Wang, M., Li, X., Tan, S., & Huang, J. (2015). A strategy of clustering modification directions in spatial image steganography. IEEE Transactions on Information Forensics and Security, 10(9), 1905–1917.

    Article  Google Scholar 

  26. Jung, K. H. (2018). Data hiding scheme improving embedding capacity using mixed PVD and LSB on bit plane. Journal of Real Time Image Processing, 14(1), 127–136.

    Article  Google Scholar 

  27. Swain, G. (2019). Very high capacity image steganography technique using quotient value differencing and LSB substitution. Arabian Journal for Science and Engineering, 44(4), 2995–3004.

    Article  Google Scholar 

  28. Liu, H. H., & Lin, Y. C. (2019). A digital data hiding scheme based on pixel-value differencing and side match method. Multimedia Tools and Applications, 78(9), 12157–12181.

    Article  Google Scholar 

  29. Elhoseny, M., Ramirez-Gonzalez, G., Abu-Elnasr, O. M., Shawkat, S. A., Arunkumar, N., & Farouk, A. (2018). Secure medical data transmission model for IoT-based healthcare systems. IEEE Access, 6, 20596–20608.

    Article  Google Scholar 

  30. Li, F., Wu, K., Zhang, X., Yu, J., Lei, J., & Wen, M. (2018). Robust batch steganography in social networks with non-uniform payload and data decomposition. IEEE Access, 6, 29912–29914.

    Article  Google Scholar 

  31. “The USC-SIPI Image Database,” [Online]. Available: http://sipi.usc.edu/database. [Accessed Oct.26, 2019].

  32. Pradhan, A., Sahu, A. K., Sekhar, K. R., & Swain, G. (2016). Performance evaluation parameters of image steganography techniques. In: 2016 International Conference on Research Advances in Integrated Navigation Systems, Bangalore, India, December 2016 (pp. 1–8). https://doi.org/10.1109/RAINS.2016.7764399.

  33. Swain, G. (2019). Advanced digital image steganography using LSB, PVD, and EMD: Emerging research and opportunities. IGI Global, First Edition, 2019.

Download references

Acknowledgements

This research is not sponsored by any government or private sponsoring agency or institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gandharba Swain.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, G., Pradhan, A. Image Steganography Using Remainder Replacement, Adaptive QVD and QVC. Wireless Pers Commun 123, 273–293 (2022). https://doi.org/10.1007/s11277-021-09131-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09131-6

Keywords