Skip to main content

Advertisement

Log in

Enhancing the Quantum Communication Channel Using a Novel Quantum Binary Salt Blowfish Strategy

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Protecting the data from malicious activities in wireless standards is one of the challenging key tasks. Moreover, cryptography plays a vital role in protecting the data in wireless channels. But some of the harmful attacks easily break the crypto algorithm, so quantum cryptography is introduced; it is the transmission of photon also proved better security for the quantum channel than the classical cryptography. So the attack in the quantum channel is difficult, but once if the quantum channel gets attacked by harmful attacks, then preventing them is too difficult. So, to enhance the security of the quantum channel, the current research proposed a novel Binary Salt Blowfish (BSB) for the encryption and decryption process. The aim of this proposed model is to enhance the security in the quantum channel against harmful activities. The proposed model is applied in the BB84 dataset; also, to check the efficiency of the proposed model, the attack like Man In The Middle (MITM) attack and Ciphertext Only Attack (COA) is launched in the quantum channel. But the quantum channel remains secure while in the presence of the attack by an efficient proposed algorithm. Finally, the efficiency of the proposed approach is compared with recent existing works and achieved better results by attaining better confidential as 99% and less error rate as 0.1. Also, it has improved the confidential rate up to 9% than the existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Ma, H., Zhang, X., Xu, P., & Liu, F. (2020). Quantum secure primary communication based on quantum information compression. Wireless Personal Communications, 113, 2203–2214. https://doi.org/10.1007/s11277-020-07319-w

    Article  Google Scholar 

  2. Miri, J., Nsiri, B., & Bouallegue, R. (2020). Certificateless based quantum cryptosystem for Ad-Hoc UWB-IR. Wireless Personal Communications, 114, 1805–1823. https://doi.org/10.1007/s11277-020-07449-1

    Article  Google Scholar 

  3. Lai, H., Luo, M., Qu, Z., Xiao, F., & Orgun, M. A. (2018). A hybrid quantum key distribution protocol for tele-care medicine information systems. Wireless Personal Communications, 98(1), 929–943. https://doi.org/10.1007/s11277-017-4902-z

    Article  Google Scholar 

  4. Ghilen, A., Azizi, M., & Bouallegue, R. (2017). Enhancing the security of IEEE 802.11i standard by integrating a quantum scheme for authentication and encryption key distribution. Wireless Personal Communications, 95(2), 1655–1675. https://doi.org/10.1007/s11277-016-3873-9

    Article  Google Scholar 

  5. Zhou, N., Yan, X., Liang, H., Tao, X., & Li, G. (2018). Multi-image encryption scheme based on quantum 3D Arnold transform and scaled Zhongtang chaotic system. Quantum Information Processing, 17(12), 338. https://doi.org/10.1007/s11128-018-2104-6

    Article  MATH  Google Scholar 

  6. Ottaviani, C., & Woolley, M. J. (2020). Terahertz quantum cryptography. IEEE Journal on Selected Areas in Communications. https://doi.org/10.1109/JSAC.2020.2968973

    Article  Google Scholar 

  7. Krawczyk, H., Bellare, M., & Canetti, R. (1997). HMAC: Keyed-hashing for message authentication. No. RFC 2104.

  8. Iqbal, H., & Krawec, W. O. (2020). Semi-quantum cryptography. Quantum Information Processing, 19(3), 97. https://doi.org/10.1007/s11128-020-2595-9

    Article  MathSciNet  Google Scholar 

  9. Aguado, A., López, D. R., Pastor, A., & López, V. (2020). Quantum cryptography networks in support of path verification in service function chains. IEEE/OSA Journal of Optical Communications and Networking, 12(4), B9–B19. https://doi.org/10.1364/JOCN.379799

    Article  Google Scholar 

  10. Scarani, V., & Kurtsiefer, C. (2014). The black paper of quantum cryptography: Real implementation problems. Theoretical Computer Science, 560, 27–32. https://doi.org/10.1016/j.tcs.2014.09.015

    Article  MathSciNet  MATH  Google Scholar 

  11. Shor, P. W. (1999). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Review, 41(2), 303–332. https://doi.org/10.1137/S0036144598347011

    Article  MathSciNet  MATH  Google Scholar 

  12. Ji, Z. X., Zhang, H. G., Wang, H. Z., Wu, F. S., Jia, J. W., & Wu, W. Q. (2019). Quantum protocols for secure multi-party summation. Quantum Information Processing, 18(6), 168. https://doi.org/10.1007/s11128-018-2141-1

    Article  MathSciNet  Google Scholar 

  13. Cozzolino, D., Da Lio, B., Bacco, D., & Oxenløwe, L. K. (2019). High-dimensional quantum communication: Benefits, progress, and future challenges. Advanced Quantum Technologies, 2(12), 1900038. https://doi.org/10.1002/qute.201900038

    Article  Google Scholar 

  14. Kumar, A., Dadheech, P., Singh, V., Raja, L., & Poonia, R. C. (2019). An enhanced quantum key distribution protocol for security authentication. Journal of Discrete Mathematical Sciences and Cryptography, 22(4), 499–507. https://doi.org/10.1080/09720529.2019.1637154

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, L., & Li, Z. (2020). A verifiable multiparty quantum key agreement based on bivariate polynomial. Information Sciences, 521, 343–349. https://doi.org/10.1016/j.ins.2020.02.057

    Article  MathSciNet  MATH  Google Scholar 

  16. Boyer, M., Liss, R., & Mor, T. (2020). Composable security against collective attacks of a modified BB84 QKD protocol with information only in one basis. Theoretical Computer Science, 801, 96–109. https://doi.org/10.1016/j.tcs.2019.08.014

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, L., Li, J., Li, C., Li, H., Yang, Y., & Chen, X. (2019). The security analysis of quantum B92 protocol in collective-rotation noise channel. International Journal of Theoretical Physics, 58(4), 1326–1336. https://doi.org/10.1007/s10773-019-04025-7

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, B., Gao, Z., Xiao, D., Huang, W., Liu, X., & Xu, B. (2019). Quantum identity authentication in the orthogonal-state-encoding QKD system. Quantum Information Processing, 18(5), 137. https://doi.org/10.1007/s11128-019-2255-0

    Article  MathSciNet  Google Scholar 

  19. Niemiec, M. (2018). Error correction in quantum cryptography based on artificial neural networks. arXiv preprint

  20. Renuka, D., & Reddy, P. C. (2018). Integrated classical and quantum cryptography scheme using three party authenticated key distribution protocols. Materials Today: Proceedings, 5(1), 1017–1023. https://doi.org/10.1016/j.matpr.2017.11.178

    Article  Google Scholar 

  21. Kang, M. S., Choi, H. W., Pramanik, T., & Han, S. W. (2018). Universal quantum encryption for quantum signature using the swap test. Quantum Information Processing, 17(10), 254. https://doi.org/10.1007/s11128-018-2029-0

    Article  MathSciNet  MATH  Google Scholar 

  22. Yang, L., Wu, C., & Xie, H. (2018). Mutual authenticated quantum no-key encryption scheme over private quantum channel. Science China Information Sciences, 61(2), 022502. https://doi.org/10.1007/s11432-017-9180-2

    Article  MathSciNet  Google Scholar 

  23. Chaturvedi, A., Ray, M., & Veynar, R. (2018). On the security of semi-device-independent QKD protocols. Quantum Information Processing, 17(6), 131. https://doi.org/10.1007/s11128-018-1892-z

    Article  MATH  Google Scholar 

  24. Li, Z., Li, Q., Liu, C., Peng, Y., Chan, W. H., & Li, L. (2018). Limited resource semiquantum secret sharing. Quantum Information Processing, 17(10), 285. https://doi.org/10.1007/s11128-018-2058-8

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Kumari.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Ethical Approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Informed Consent

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S. Enhancing the Quantum Communication Channel Using a Novel Quantum Binary Salt Blowfish Strategy. Wireless Pers Commun 123, 1085–1102 (2022). https://doi.org/10.1007/s11277-021-09171-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09171-y

Keywords