Skip to main content
Log in

Design of a Dual-Polarized UWB 5G NR Antenna

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we propose a compact, planar, eight-port/four-resonator slot antenna array with a dual-polarized function for multiple-input-multiple-output (MIMO) 5G Smartphone Applications. The design is composed of four pairs of L-shaped microstrip fed slot antennas, located at the corners of the mobile terminals PCB. Each pair of antennas consists of a radiator with two concentric annular slots and two circular slotted. Due to the orthogonal arrangement of the feed lines, a function of polarization and diversity of the radiation pattern is provided. In order to reduce the mutual coupling characteristic of the antenna ports, we have inserted a rectangular slot under each microstrip feed line. The -10-dB impedance bandwidth of the proposed antenna array can completely cover the 5G Sub-6GHz NR frequency Bands n77/n78/n79, which includes the 5G band of US (3.55–4.2 GHz), China, EU and Japan (3.6–4.2 GHz, 4.4–4.9 GHz), as well as the LTE Band 46 (5.15–5.925 GHz). The proposed MIMO antenna offers good S-parameters, high-gain radiation patterns, and sufficient total efficiencies, even though it is arranged on a high-loss FR-4 dielectric. According to the reached results, the proposed MIMO antenna may be a suitable application-oriented design for 5G mobile communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Wu, L., Xia, Y., & Cao, Z. (2018). A miniaturized UWB-MIMO antenna with quadruple band-notched characteristics. International Journal of Microwave and Wireless Technologies, 10(8), 948–955.

    Article  Google Scholar 

  2. Alsaif, H., Usman, M., Chughtai, M. T., & Nasir, J. (2018). Cross Polarized 2x2 UWB-MIMO antenna system for 5G wireless applications. Progress in Electromagnetics Research M, 76, 157–166.

    Article  Google Scholar 

  3. Berezdivin, R., Breinig, R., & Topp, R. (2002). Next-generation wireless communications concepts and technologies. IEEE Communications Magazine, 40(3), 108–116.

    Article  Google Scholar 

  4. Muirhead, D., Imran, M. A., & Arshad, K. (2015). Insights and approaches for low-complexity 5G small-cell base-station design for indoor dense networks. IEEE Access, 3, 1562–1572.

    Article  Google Scholar 

  5. Pierucci, L. (2015). The quality of experience perspective toward 5G technology. IEEE Wireless Communications, 22(4), 10–16.

    Article  Google Scholar 

  6. Alhadi, A. A., Ilvonen, J., Valkonen, R., & Viikari, V. (2014). Eight-element antenna array for diversity and MIMO mobile terminal in LTE 3500 MHz band. Microwave and Optical Technology Letters, 56(6), 1323–1327.

    Article  Google Scholar 

  7. Gao, C., Li, X. Q., Lu, W. J., & Wong, K. L. (2018). Conceptual design and implementation of a four-element MIMO antenna system packaged within a metallic handset. Microwave and Optical Technology Letters, 60(2), 436–444.

    Article  Google Scholar 

  8. Zhang, S., Glazunov, A. A., Ying, Z., & He, S. (2013). Reduction of the envelope correlation coecient with improved total eciency for mobile LTE MIMO antenna arrays: Mutual scattering mode. IEEE Transactions on Antennas and Propagation, 61(6), 3280–3291.

    Article  Google Scholar 

  9. Chandel, R., & Gautam, A. (2016). Compact MIMO/diversity slot antenna for UWB applications with band-notched characteristics. Electronics Letters, 51(5), 336–338.

    Article  Google Scholar 

  10. Wong, K., Lu, J., Chen, L., Li, W., & Ban, Y. (2016). 8-antenna and 16-antenna arrays using the quad-antenna linear array as a building block for the 3.5-GHz LTE MIMO operation in the smartphone. Microwave and Optical Technology Letters, 58(1), 174–181.

    Article  Google Scholar 

  11. Shi, H., Zhang, X., Li, J., Jia, P., Chen, J., & Zhang, A. (2018). 3.6-GHz eight-antenna MIMO array for mobile terminal applications. International Journal of Electronics and Communications, 95, 342–348.

    Article  Google Scholar 

  12. Li, Y., Sim, C. Y. D., Luo, Y., & Yang, G. (2019). High-Isolation 3.5-GHz 8-Antenna MIMO Array Using Balanced Open Slot Antenna Element for 5G Smartphones. IEEE Transactions on Antennas and Propagation, 67(6), 3820–3830.

    Article  Google Scholar 

  13. Xu, Z., Ding, C., Zhou, Q., Sun, Y., & Huang, S. (2019). A dual-band dual-antenna system with common-metal rim for smartphone applications. Electronics, 8(3), 348.

    Article  Google Scholar 

  14. Guo, J., Cui, L., Li, C., & Sun, B. (2018). Side-Edge Frame Printed Eight-Port Dual-Band Antenna Array for 5G Smartphone Applications. IEEE Transactions on Antennas and Propagation, 66(12), 7412–7417.

    Article  Google Scholar 

  15. Aziz, H. S., & Naji, D. K. (2020). Compact Dual-Band MIMO antenna system for LTE smartphone applications. Progress in Electromagnetics Research C, 102, 13–30.

    Article  Google Scholar 

  16. Zou, H., Li, Y., Sim, C. Y. D., & Yang, G. (2018). Design of 8x8 dual-band MIMO antenna array for 5G smartphone applications. International Journal of RF and Microwave Computer-Aided Engineering, 28(9), e21420.

    Article  Google Scholar 

  17. Zhao, K., Zhang, S., Ishimiya, K., Ying, Z., & He, S. (2015). Body-insensitive multimode MIMO terminal antenna of double-ring structure. IEEE Transactions on Antennas and Propagation, 63(5), 1925–1936.

    Article  MathSciNet  Google Scholar 

  18. Jha, K., & Sharma, S. (2018). Combination of MIMO antennas for handheld devices [wireless corner]. IEEE Antennas and Propagation Magazine, 60(1), 118–131.

    Article  Google Scholar 

  19. Saxena, S., Kanaujia, B. K., Dwari, S., Kumar, S., & Tiwari, R. (2018). MIMO antenna with built-in circular shaped isolator for sub-6 GHz 5G applications. Electronics Letter, 54, 478–480.

    Article  Google Scholar 

  20. Cai, Q., Li, Y., Zhang, X., & Shen, W. (2019). Wideband MIMO Antenna Array Covering 3.3–7.1 GHz for 5G Metal-Rimmed Smartphone Applications. IEEE Transactions on Antennas and Propagation, 7, 142070–142084.

    Google Scholar 

  21. Xu, Z., Zhou, Q., Ban, Y., & Ang, S. S. (2018). Hepta-Band Coupled-Fed Loop Antenna For LTE/WWAN Unbroken Metal—Rimmed Smartphone Applications. IEEE Antennas and Wireless Propagation Letters, 17(2), 311–314.

    Article  Google Scholar 

  22. Khan, R., Al-Hadi, A. A., & Soh, P. J. (2019). Recent advancements in user effect mitigation for mobile terminal antennas: A review. IEEE Transactions on Electromagnetic Compatibility, 61(1), 279–287.

    Article  Google Scholar 

  23. Sun, L., Feng, H., Li, Y., & Zhang, Z. (2018). Compact 5G MIMO Mobile Phone Antennas With Tightly Arranged Orthogonal-Mode Pairs. IEEE Transactions on Antennas and Propagation, 66(11), 6364–6369.

    Article  Google Scholar 

  24. Li, M., et al. (2016). Eight-port orthogonally dual-polarized antenna array for 5G smartphone applications. IEEE Transactions on Antennas and Propagation, 64(9), 3820–3830.

    Article  MathSciNet  Google Scholar 

  25. Wong, K., Tsai, C., & Lu, J. (2017). Two asymmetrically mirrored gap-coupled loop antennas as a compact building block for eight—antenna MIMO array in the future smartphone. IEEE Transactions on Antennas and Propagation, 65, 1765–1778.

    Article  MathSciNet  Google Scholar 

  26. Zhang, S., Zhao, K., Ying, Z., & He, S. (2015). Investigation of diagonal antenna-chassis mode in mobile terminal LTE MIMO antennas for bandwidth enhancement. IEEE Antennas and Propagation Magazine, 57, 217–228.

    Article  Google Scholar 

  27. Saleem, R., Bilal, M., Bajwa, K., & Shaque, M. (2015). Eight-element UWB-MIMO array with threed istinct isolation mechanisms. Electronics Letters, 51(4), 311–313.

    Article  Google Scholar 

  28. Sghaier, N., & Latrach, L. (2020). Iterative technique for analysis and design of circular leaky-wave antenna for the 2.45-GHz radio-frequency identification applications. Int J RF Microw Comput Aided Eng, 30(7), e22207.

    Article  Google Scholar 

  29. Elshirkasi, A. M., Abdullah, Al-Hadi A., Mansor, M. F., Khan, R., & Soh, P. J. (2019). Envelope Correlation Coecient of a Two-Port MIMO Terminal Antenna Under Uniform and Gaussian Angular Power Spectrum with User‘s Hand Eect. Progress in Electromagnetics Research C, 92, 123–136.

    Article  Google Scholar 

  30. Sharawi, M., Hassan, A., & Khan, M. (2017). Correlation coecient calculations for MIMO antenna systems: A comparative study. International Journal of Microwave and Wireless Technologies, 9(10), 1991–2004.

    Article  Google Scholar 

  31. Hui, L., Jiang, X., & Sailing, H. (2009). A compact planar MIMO antenna system of four elements with similar radiation char—acteristics and isolation structure. IEEE Antennas and Wireless Propagation Letters, 8, 1107–1110.

    Article  Google Scholar 

  32. Sun, L., Li, Y., Zhang, Z., & Wang, H. (2020). Self-Decoupled MIMO Antenna Pair With Shared Radiator for 5G Smartphones. IEEE Transactions on Antennas and Propagation, 68(5), 3423–3432.

    Article  Google Scholar 

  33. Zhang, X., Li, Y., Wang, W., & Shen, W. (2019). Ultra-Wideband 8-Port MIMO Antenna Array for 5G Metal-Frame Smartphones. IEEE Access, 7, 72273–72282.

    Article  Google Scholar 

  34. Sim, C. Y. D., Liu, H. Y., & Huang, C. J. (2019). Wideband MIMO antenna array design for future mobile devices operating in the 5G NR Frequency Bands n77/n78/n79 and LTE Band 46. IEEE Antennas and Wireless Propagation Letters, 19(1), 74–78.

    Article  Google Scholar 

  35. Li, Y., & Yang, G. (2018). Dual-mode and triple-band 10-antenna handset array and its multiple-input multiple-output performance evaluation in 5G. International Journal of RF and Microwave Computer-Aided Engineering, 7, 14270–142084.

    Google Scholar 

  36. Wang, H., Zhang, R., Luo, Y., & Yang, G. (2020). Compact eight-element antenna array for triple-band MIMO operation in 5G mobile terminals. IEEE Access, 2020(8), 19433–19449.

    Article  Google Scholar 

  37. Biswas, A., & Gupta, V. R. (2020). Design and development of low prole MIMO Antenna for 5G New radio smartphone applications. Wireless Personal Communications, 111, 1695–1706.

    Article  Google Scholar 

Download references

Acknowledgements

We are especially thank ful to Prof.Ali Gharsallah and all the members of the laboratory of the Faculty of Sciences of Tunis for the time and guidance given through this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nizar Sghaier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sghaier, N., Latrach, L. & Gharsallah, A. Design of a Dual-Polarized UWB 5G NR Antenna. Wireless Pers Commun 123, 1293–1310 (2022). https://doi.org/10.1007/s11277-021-09181-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09181-w

Keywords

Navigation