Skip to main content
Log in

Design of a Dynamic ADC Comparator with Low Power and Low Delay Time for IoT Application

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a low power and low delay comparator circuit for the IoT applications has been designed and analyzed. In the proposed comparator, two different voltage levels have been used for the preamplifier and latch sections to control delay and power consumption. To increase the difference between the outputs in the preamplifier structure, two inverter in the inputs has been used. This technique reduces the delay of the comparator outputs. In order to reduce power consumption, the latch section is designed by using SCPG transistors. The operation frequency of this circuit is 50 MHz. In this frequency, the delay and power consumption are 340 ps and 3.55 μW, respectively. The input offset voltage is about 0.6 mV. The circuit has been designed and simulated in 65 nm CMOS technology and the chip area is 230μm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ghorbani, A., & Ghaznavi-Ghoushchi, M. (2017). A novel fully differential CMOS Class-E power amplifier with higher output power and efficiency for IoT application. Wireless Personal Communications, 97(2), 3203–3213.

    Article  Google Scholar 

  2. Singh, M. K., & Akashe, S. (2018). Design and enactment of diverse low power techniques based schmitt trigger. Wireless Personal Communications, 101(4), 2105–2125.

    Article  Google Scholar 

  3. Nejadhasan, S., Zaheri, F., Abiri, E., & Salehi, M. R. (2020). PVT-compensated low-voltage and low-power CMOS LNA for IoT applications. International Journal of RF and Microwave Computer-Aided Engineering, 30(11), e22419. https://doi.org/10.1002/mmce.22419.

    Article  Google Scholar 

  4. Nejadhasan, S., Zaheri, F., Abiri, E., & Salehi, M. R. (2022). PVT-compensated low voltage LNA based on variable current source for low power applications. AEU - International Journal of Electronics and Communications, 143, 154042. https://doi.org/10.1016/j.aeue.2021.154042.

    Article  Google Scholar 

  5. Ghanavati, B., Abiri, E., Salehi, M. R., Keyhani, A., & Sanyal, A. (2017). LSB split capacitor SAR ADC with 99.2% switching energy reduction. Analog Integrated Circuits and Signal Processing, 93(2), 375–382.

    Article  Google Scholar 

  6. Lu, J., & Holleman, J. (2013). A low-power high-precision comparator with time-domain bulk-tuned offset cancellation. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(5), 1158–1167.

    Article  MathSciNet  Google Scholar 

  7. Rabuske, T., Rabuske, F., Fernandes, J., & Rodrigues, C. (2015). An 8-bit 0.35-V 5.04-fJ/conversion-step SAR ADC with background self-calibration of comparator offset. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23(7), 1301–1307.

    Article  Google Scholar 

  8. Ay, S. U. (2011). A sub-1áVolt 10-bit supply boosted SAR ADC design in standard CMOS. Analog Integrated Circuits and Signal Processing, 66(2), 213–221.

    Article  Google Scholar 

  9. Babayan-Mashhadi, S., & Lotfi, R. (2014). Analysis and design of a low-voltage low-power double-tail comparator. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(2), 343–352.

    Article  Google Scholar 

  10. Bahmanyar, P., Maymandi-Nejad, M., Hosseini-Khayat, S., & Berekovic, M. (2016). Design and analysis of an ultra-low-power double-tail latched comparator for biomedical applications. Analog Integrated Circuits and Signal Processing, 86(2), 159–169.

    Article  Google Scholar 

  11. Chan, C.-H., Zhu, Y., Chio, U.-F., Sin, S.-W., Seng-Pan, U., & Martins, R. P. A reconfigurable low-noise dynamic comparator with offset calibration in 90nm CMOS. In IEEE Asian Solid-State Circuits Conference 2011, 2011 (pp. 233–236): IEEE

  12. Abbas, M., Furukawa, Y., Komatsu, S., Takahiro, J. Y., & Asada, K. Clocked comparator for high-speed applications in 65nm technology. In 2010 IEEE Asian Solid-State Circuits Conference, 2010 (pp. 1–4): IEEE

  13. Gao, J., Li, G., & Li, Q. (2015). High-speed low-power common-mode insensitive dynamic comparator. Electronics Letters, 51(2), 134–136.

    Article  MathSciNet  Google Scholar 

  14. Xu, D., Xu, S., & Chen, G. (2015). High-speed low-power and low-power supply voltage dynamic comparator. Electronics Letters, 51(23), 1914–1916.

    Article  Google Scholar 

  15. Wicht, B., Nirschl, T., & Schmitt-Landsiedel, D. (2004). Yield and speed optimization of a latch-type voltage sense amplifier. IEEE Journal of solid-state circuits, 39(7), 1148–1158.

    Article  Google Scholar 

  16. Wong, K.-L., & Yang, C.-K. (2004). Offset compensation in comparators with minimum input-referred supply noise. IEEE Journal of solid-state circuits, 39(5), 837–840.

    Article  Google Scholar 

  17. Schinkel, D., Mensink, E., Klumperink, E., Van Tuijl, E., & Nauta, B. A double-tail latch-type voltage sense amplifier with 18ps setup+ hold time. In 2007 IEEE international solid-state circuits conference. Digest of technical papers, 2007 (pp. 314–605): IEEE

  18. Baker, R. J. (2008). CMOS: circuit design, layout, and simulation (Vol. 1). New York: John Wiley & Sons.

    Book  Google Scholar 

  19. Salehi, M. R., Dastanian, R., Abiri, E., & Nejadhasan, S. (2015). A 1.58 nW power consumption and 34.45 ppm/°C temperature coefficient bandgap reference (BGR) for subblocks of RFID tag. Microelectronics Journal, 46(5), 383–389.

    Article  Google Scholar 

  20. de La Fuente-Cortes, G., Flores-Verdad, G. E., Gonzalez-Diaz, V. R., & Diaz-Mendez, A. (2017). A new CMOS comparator robust to process and temperature variations for SAR ADC converters. Analog Integrated Circuits and Signal Processing, 90(2), 301–308.

    Article  Google Scholar 

  21. Zhu, X., Chen, Y., Kibune, M., Tomita, Y., Hamada, T., Tamura, H., et al. (2010). A dynamic offset control technique for comparator design in scaled CMOS technology. IEICE transactions on fundamentals of electronics, communications and computer sciences, 93(12), 2456–2462.

    Article  Google Scholar 

  22. Goll, B., & Zimmermann, H. (2009). A comparator with reduced delay time in 65-nm CMOS for supply voltages down to 0.65 V. IEEE Transactions on Circuits and Systems II: Express Briefs, 56(11), 810–814.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Abiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nejadhasan, S., Mehrabi-Moghadam, Z., Abiri, E. et al. Design of a Dynamic ADC Comparator with Low Power and Low Delay Time for IoT Application. Wireless Pers Commun 123, 1573–1591 (2022). https://doi.org/10.1007/s11277-021-09201-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09201-9

Keyword

Navigation