Skip to main content
Log in

Union Bound on the Bit Error Rate for MIMO-GFDM Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a union bound on the bit error rate (BER) for multiple input multiple output generalized frequency division multiplexing (MIMO-GFDM) systems is derived based on exact pairwise error probabilities. The moment-generating function is used to calculate the exact pairwise error probability under the assumption that a maximum likelihood detector is used at the receiver. A realistic multipath MIMO channel environment is investigated in which the spatial correlation between antennas and the channel estimation errors are included. The Kronecker model and an additive model are used to describe the spatial correlation and channel estimation errors, respectively. The impacts of the spatial correlation and the channel estimation errors on the derived bound are investigated. The performances of MIMO-GFDM systems using different modulation techniques are also examined. Numerical calculations of the union bound and computer-based Monte-Carlo simulations of BER are carried out to verify the derived bound. Numerical results show that the derived union bound is a tight upper bound on the BER for MIMO-GFDM systems in a reasonable \(E_s/N_0\) region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

Code availability

Not applicable.

References

  1. Fettweis, G., Krondorf, M., & Bittner, S. (2009). GFDM-generalized frequency division multiplexing. In IEEE 69th vehicular technology conference (VTC Spring 2009), Barcelona, Spain.

  2. Michailow, N., Matthé, M., Gaspar, I. S., Caldevilla, A. N., Mendes, L. L., Festag, A., & Fettweis, G. (2014). Generalized frequency division multiplexing for 5th generation cellular networks. IEEE Transactions on Communications, 62(9), 3045–3061.

    Article  Google Scholar 

  3. Liang, Y.-C., Chen, K.-C., Li, G. Y., & Mahonen, P. (2011). Cognitive radio networking and communications: An overview. IEEE Transactions on Vehicular Technology, 60(7), 3386–3407.

    Article  Google Scholar 

  4. Wunder, G., Jung, P., Kasparick, M., Wild, T., Schaich, F., Chen, Y., et al. (2014). 5GNOW: Non-orthogonal, asynchronous waveforms for future mobile applications. IEEE Communications Magazine, 52(2), 97–105.

    Article  Google Scholar 

  5. Fettweis, G. P. (2014). The tactile internet: Applications and challenges. IEEE Vehicular Technology Magazine, 9(1), 64–70.

    Article  Google Scholar 

  6. Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 6, 311–335.

    Article  Google Scholar 

  7. Matthé, M., Zhang, D., & Fettweis, G. (2018). Low-complexity iterative MMSE-PIC detection for MIMO-GFDM. IEEE Transactions on Communications, 66(4), 1467–1480.

    Article  Google Scholar 

  8. Matthé, M., Gaspar, I., Zhang, D., & Fettweis, G. (2015). Near-ML detection for MIMO-GFDM. In IEEE 82nd vehicular technology conference (VTC2015-Fall), Boston, MA, USA.

  9. Tabatabaee, S. M. J. A., Towliat, M., & Rajabzadeh, M. (2021). Novel transceiver beamforming schemes for a MIMO-GFDM system. Physical Communication, 47, 101376.

    Article  Google Scholar 

  10. Khan, M. Q., & Danish, N. M. (2021). Spatial transmit diversity for GFDM via low complexity transceiver design. In 2021 IEEE 93rd vehicular technology conference (VTC2021-Spring) (pp. 1–5).

  11. Rakhimov, D., Deram, S. P., Sokal, B., Naskovska, K., Almeida, A. D., & Haardt, M. (2020). Iterative tensor receiver for MIMO-GFDM systems. In 2020 IEEE 11th sensor array and multichannel signal processing workshop (SAM) (pp. 1–5).

  12. Kiessling, M., Speidel, J., Geng, N., & Reinhardt, M. (2003). Performance analysis of MIMO maximum likelihood receivers with channel correlation, colored Gaussian noise, and linear prefiltering. In IEEE international conference on communications (ICC’03), Anchorage, AK, USA (pp. 3026–3030).

  13. Towliat, M., Tabatabaee, S. M. J. A., & Rajabzadeh, M. (2019). A simple ML detection for coded generalized frequency division multiplexing in MIMO channels. IEEE Transactions on Signal Processing, 67(3), 798–807.

    Article  MathSciNet  Google Scholar 

  14. Taricco, G., & Biglieri, E. (2002). Exact pairwise error probability of space-time codes. IEEE Transactions on Information Theory, 48(2), 510–513.

    Article  MathSciNet  Google Scholar 

  15. Lamahewa, T. A., Simon, M. K., Kennedy, R. A., & Abhayapala, T. D. (2005). Performance analysis of space-time codes in realistic propagation environments: A moment generating function-based approach. Journal of Communications and Networks, 7(4), 450–461.

    Article  Google Scholar 

  16. Gritsch, G., Weinrichter, H., & Rupp, M. (2004). A union bound of the bit error ratio for data transmission over correlated wireless MIMO channels. In 2004 IEEE international conference on acoustics, speech, and signal processing, Montreal, Que. Canada.

  17. Costa, N., & Haykin, S. (2010). 3. Multiple-input, multiple-output channel models: Theory and practice. Hoboken: Wiley.

    Book  Google Scholar 

  18. Forenza, A., Love, D. J., & Heath, R. W. (2007). Simplified spatial correlation models for clustered MIMO channels with different array configurations. IEEE Transactions on Vehicular Technology, 56(4), 1924–1934.

    Article  Google Scholar 

  19. Gucluoglu, T., & Panayirci, E. (2008). Performance of transmit and receive antenna selection in the presence of channel estimation errors. IEEE Communications Letters, 12(5), 371–373.

    Article  Google Scholar 

  20. Tarokh, V., Naguib, A., Seshadri, N., & Calderbank, A. R. (1999). Space-time codes for high data rate wireless communication: Performance criteria in the presence of channel estimation errors, mobility, and multiple paths. IEEE Transactions on Communications, 47(2), 199–207.

    Article  Google Scholar 

  21. Vucetic, B., & Yuan, J. (2003). 2. Space-Time Coding. West Sussex: Wiley.

    Book  Google Scholar 

  22. Turin, G. L. (1960). The characteristic function of Hermitian quadratic forms in complex normal variables. Biometrika, 47(1–2), 199–201.

    Article  MathSciNet  Google Scholar 

  23. Simon, M. K., & Alouini, M. S. (2005). Digital communication over fading channels (2nd ed.). Hoboken: Wiley.

    Google Scholar 

  24. Loyka, S. L. (2001). Channel capacity of MIMO architecture using the exponential correlation matrix. IEEE Communications Letters, 5(9), 369–371.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the China Scholarship Council and the Natural Sciences and Engineering Research Council of Canada for their funding support for the work.

Funding

Yanpeng Wang received a scholarship from the China Scholarship Council. Paul Fortier received funds from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Contributions

YW and PF jointly conceived the fundamental idea of this work. YW developed the methodology, conducted related simulations, and wrote the paper. PF provided critical guidance on the methodology and simulations and revised the paper.

Corresponding author

Correspondence to Yanpeng Wang.

Ethics declarations

Conflict of interest

The authors have no relevant conflicts of interest to disclose.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Fortier, P. Union Bound on the Bit Error Rate for MIMO-GFDM Systems. Wireless Pers Commun 123, 1825–1839 (2022). https://doi.org/10.1007/s11277-021-09215-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09215-3

Keywords

Navigation