Skip to main content
Log in

Parametric Optimization of Complementary Split-Ring Resonator Dimensions for Planar Antenna Size Miniaturization

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a flexible and a modular approach to design complementary split-ring resonator (CSRR) metamaterials is presented which is further applied for a planar antenna miniaturization. The design task is treated as an optimization problem and one of the well-known computational techniques, particle swarm optimization (PSO) is employed to identify the design dimensions of planar CSRR structure followed by a C-band antenna miniaturization. Two trained neural networks (NNs) make use of machine learning (ML) approach to reduce the design time. The proposed procedure is easy to implement and can be further employed to design similar or other distinct metamaterial structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are not publicly available due to organizational restrictions but are available from the corresponding author on a reasonable request after approval from authorities.

Code availability

No code available to share.

References

  1. Kula, J. S., Psychoudakis, D., Liao, W.-J., Chen, C.-C., Volakis, J. L., & Halloran, J. W. (2006). Patch-antenna miniaturization using recently available ceramic substrates. IEEE Antennas and Propagation Magazine, 48, 13–20.

    Article  Google Scholar 

  2. Waterhouse, R. B., Targonski, S. D., & Kokotoff, D. M. (1998). Design and performance of small printed antennas. IEEE Transactions on Antennas and Propagation, 46, 1629–1633.

    Article  Google Scholar 

  3. Wong, H., Luk, K.-M., Chan, C. H., Xue, Q., So, K. K., & Lai, H. W. (2012). Small antennas in wireless communications. Proceedings of the IEEE, 100, 2109–2121.

    Article  Google Scholar 

  4. Huang, J. (2001). Miniaturized UHF microstrip antenna for a Mars mission. In Antennas and propagation society international symposium (Vol. 4, pp. 486–489). IEEE.

  5. Chair, R., Luk, K. M., & Lee, K. F. (2000). Miniature multi-layer shorted patch antenna. Electronics Letters, 36, 3–4.

    Article  Google Scholar 

  6. Behdad, N., & Sarabandi, K. (2004). Bandwidth enhancement and further size reduction of a class of miniaturized slot antennas. IEEE Transactions on Antennas and Propagation, 52(8), 1928–1935.

    Article  Google Scholar 

  7. Lee, Y., & Hao, Y. (2008). Characterization of microstrip patch antennas on metamaterial substrates loaded with complimentary split ring resonators. Microwave and Optical Technology Letters, 50(8), 2131–2135.

    Article  Google Scholar 

  8. Ochetan, A. B., & Lojewski, G. (2010) Metamaterial leaky-wave and resonant type antennas. In Electronics and telecommunications (ISETC), 2010 9th international symposium on, Timisoara (pp. 57–60).

  9. Marbet, O. E., Aznabet, M., Falcone, F., Rmili, H., Floch, J. M., Drissi, M., & Essaaidi, M. (2013). A compact split ring resonator antenna for wireless communication system. Progress in Electromagnetic Research Letters, 3, 201–207.

    Article  Google Scholar 

  10. Queipo, N. V., Haftka, R. T., Shyy, W., Goel, T., Vaidyanathan, R., & Tucker, P. K. (2005). Surrogate-based analysis and optimization. Progress in Aerospace Sciences, 41, 1–28.

    Article  Google Scholar 

  11. Gorissen, D., Couckuyt, I., Demeester, P., Dhaene, T., & Crombecq, K. (July 2010). A surrogate modeling and adaptive sampling toolbox for computer based design. Journal of Machine Learning Research, 11, 2051–2055.

    Google Scholar 

  12. Pham, T.-Q., Kamusella, A., Neubert, H. (2011). Auto-extraction of modelica code from finite element analysis or measurement data. In 8th International Modelica Conference, 20–22 March 2011 in Dresden.

  13. Soller, D. R., et al. (2001). Progress report on the national geologic map database, phase 3: An online database of map information digital mapping techniques '01—Workshop proceedings U.S. Geological Survey Open-File Report 01-223.

  14. Garitselov, O., Mohanty, S., & Kougianos, E. (2012). A comparative study of metamodels for fast and accurate simulation of nano-CMOS circuits archived 23 September 2015 at the Wayback machine. IEEE Transactions on Semiconductor Manufacturing (TSM), 25(1), 26–36.

    Article  Google Scholar 

  15. Nelson, M. F. (2014). Experimental and simulation studies of the population genetics, drought tolerance, and vegetative growth of Phalarisarundinacea (Doctoral Dissertation). University of Minnesota.

  16. Gustafsson, L., & Sternad, M. (2010). Consistent micro, macro, and state-based population modelling. Mathematical Biosciences., 225(2), 94–107.

    Article  MathSciNet  Google Scholar 

  17. Bandler, J. W., Cheng, Q. S., Nikolova, N. K., & Ismail, M. A. (Jan. 2004). Implicit space mapping optimization exploiting preassigned parameters. IEEE Transactions on Microwave Theory and Techniques, 52(1), 378–385.

    Article  Google Scholar 

  18. Bandler, J. W., Cheng, Q., Dakroury, S. A., Mohamed, A. S., Bakr, M. H., Madsen, K., & Sondergaard, J. (2004). Space mapping: the state of the art. IEEE Transactions on Microwave Theory and Techniques, 52(1), 337–361.

    Article  Google Scholar 

  19. Zhang, Q. J., & Gupta, K. C. (2000). Neural network for RF and microwave design. Artech House.

  20. Christodoulou, C., & Georgiopolous, M. (2001). Application of neural networks in electromagnetics. Artech House.

    Google Scholar 

  21. Haykin, S. (1994). Neural networks: a comprehensive foundation. IEEE Press/IEEE Computer Socity Press.

    MATH  Google Scholar 

  22. Robinson, J., & Rahamat-Sammi, Y. (2004). Particle swarm optimization in electromagnetic. IEEE Transactions on Antennas and propagation, 52(2), 397–407.

    Article  MathSciNet  Google Scholar 

  23. Xu, S., & Rahamat-Sammi, Y. (2007). Boundary condition in particle swarm optimization revisited. IEEE Transaction on Antenna and Propagation, 55(3), 760–765.

    Article  Google Scholar 

  24. Parsopoulos, K. E., & Varhatis, M. N. (2002). Recent approaches to global optimization problems through particle swarm optimization. International Journal on Natural Computing, 1(2–3), 235–306.

    Article  MathSciNet  Google Scholar 

  25. Smith, D. R., & Schultz, S. (2002). Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Physical Review Letters, 65, 195104-1-195104–5.

    Google Scholar 

  26. Chen, X., Grzegorczyk, T. M., Bae-Ian, W., Pacheco, J., & Kong, J. A. (2004). Robust method to retrieve the constitutive effective parameters of metamaterials. Physical Review Letters, 70, 016680-1-016680–8.

    Google Scholar 

  27. Smith, D. R., Vier, D. C., Koshney, T., & Soukoulis, C. M. (2005). Electromagnetic parameter retrieval from inhomogeneous metamaterial. Physical Review Letters, 71, 033617–033621.

    Google Scholar 

  28. Ziolkowski, R. W. (2003). Design, fabrication, and testing of double negative metamaterials. IEEE Transactions on Antennas and Propagation, 51, 1516–1529.

    Article  Google Scholar 

Download references

Funding

The research work is not supported by any funding agency but resources as required for completion of the study/work at authors' current affiliation are utilized.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Singhal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, D., Singhal, R. & Bandyopadhyay, A.K. Parametric Optimization of Complementary Split-Ring Resonator Dimensions for Planar Antenna Size Miniaturization. Wireless Pers Commun 123, 1897–1911 (2022). https://doi.org/10.1007/s11277-021-09220-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09220-6

Keywords

Navigation