Skip to main content
Log in

Fuzzy Logic Based Decoder for Single-User Millimeter Wave Systems Under Impulsive Noise

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The conventional millimeter wave systems are mostly designed to operate only for the Gaussian noise model. In many physical channels, such as urban and indoor radio channels, the ambient noise is known through experimental measurements to be non-Gaussian. Hence, recent research findings state that a mixture noise model with additive impulsive noise is a more realistic approximation for millimeter wave channels. In this paper, we propose a novel approach to suppress the impulsive noise effects on single-user millimeter wave massive multiple-input-multiple-output system using an adaptive fuzzy logic filter. Hence, a fuzzy median filter is applied to the system and it is aimed to minimize the effects of the impulsive noise by ordering samples based on fuzzy rank. Simulation results show that the proposed filter successfully suppresses the impulsive noise effects and achieves a better bit error rate and spectral efficiency performance than the competing methods in the literature while also working efficiently in Gaussian noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Code Availability

Code is available from the corresponding author, upon reasonable request.

References

  1. Alsharif, M. H., & Nordin, R. (2017). Evolution towards fifth generation (5G) wireless networks: Current trends and challenges in the deployment of millimetre wave, massive MIMO, and small cells. Telecommunication Systems, 64(4), 617–637. https://doi.org/10.1007/s11235-016-0195-x

    Article  Google Scholar 

  2. Shariat, M., et al. (2016). 5G radio access above 6 GHz. Transactions on Emerging Telecommunications Technologies. https://doi.org/10.1002/ett.3076

    Article  Google Scholar 

  3. Su, L., Niu, Y., Vasilakos, A. V., Li, Y., & Jin, D. (2015). A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges. Wireless Networks, 21(8), 2657–2676. https://doi.org/10.1007/s11276-015-0942-z

    Article  Google Scholar 

  4. Rappaport, T. S., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335–349. https://doi.org/10.1109/ACCESS.2013.2260813

    Article  Google Scholar 

  5. Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107. https://doi.org/10.1109/MCOM.2011.5783993

    Article  Google Scholar 

  6. Vu, M., & Paulraj, A. (2007). MIMO wireless linear precoding. IEEE Signal Processing Magazine, 24(5), 86–105. https://doi.org/10.1109/MSP.2007.904811

    Article  Google Scholar 

  7. Alkhateeb, A., Mo, J., González-Prelcic, N., & Heath, R. W. (2014). MIMO precoding and combining solutions for millimeter-wave systems. IEEE Communications Magazine. https://doi.org/10.1109/MCOM.2014.6979963

    Article  Google Scholar 

  8. El Ayach, O., Rajagopal, S., Abu-Surra, S., Pi, Z., & Heath, R. W. (2014). Spatially sparse precoding in millimeter wave MIMO systems. IEEE Transactions on Wireless Communications, 13(3), 1499–1513. https://doi.org/10.1109/TWC.2014.011714.130846

    Article  Google Scholar 

  9. Vuong, B. Q., Huynh, H. T., Do, H. N. (2018) Monte-Carlo performance analysis of OFDM system in the presence of multi-path fading environment and non-Gaussian noise. In International Conference on Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom), doi: https://doi.org/10.1109/SIGTELCOM.2018.8325796

  10. Middleton, D. (2009). An introduction to: Statistical communication theory. Wiley-IEEE Press.

  11. Wang, X., & Poor, H. V. (1999). Robust multiuser detection in non-gaussian channels. IEEE Transactions on Signal Processing. https://doi.org/10.1109/78.740103

    Article  Google Scholar 

  12. Rouissi, F., Vinck, A. J. H., & Ghazel, A. (2021). On the simulation of the Middleton Class-A noise model for single- and multi-carrier modulation in power line communication. Telecommunication Systems. https://doi.org/10.1007/s11235-020-00746-x

    Article  Google Scholar 

  13. Alam, M. S., Selim, B., & Kaddoum, G. (2019). Analysis and comparison of several mitigation techniques for middleton class-A noise. IEEE Latin-American Conference on Communications (LATINCOM). https://doi.org/10.1109/LATINCOM48065.2019.8938020

    Article  Google Scholar 

  14. Hagglund, K., & Axell, E. (2019) Adaptive demodulation in class a impulse noise channels. In IEEE Conference and Exhibition on Global Telecommunications (GLOBECOM), doi: https://doi.org/10.1109/GLOBECOM38437.2019.9013968.

  15. Moaveninejad, S., Kumar, A., Elgenedy, M., Magarini, M., Al-Dhahir, N., Tonello, A. M. (2019) Gaussian-Middleton Classification of cyclostationary correlated noise in Hybrid MIMO-OFDM WiNPLC. In IEEE International Conference on Communications (ICC), doi: https://doi.org/10.1109/ICC.2019.8761152.

  16. Liu, L., & Amin, M. G. (2008) Performance analysis of GPS receivers in non-Gaussian noise incorporating precorrelation filter and sampling rate. In IEEE Transactions Signal Processing, doi: https://doi.org/10.1109/TSP.2006.890827.

  17. Maeda, K., Nakata, H., & Fujito, K. (1993). Analysis of BER of 16QAM signal in AM/16QAM hybrid optical transmission system. Electronics Letters, 29(7), 640–642.

    Article  Google Scholar 

  18. R. I. P, “RECOMMENDATION ITU-R P.372-9 Radio noise,” Group, 2007.

  19. Katkovnik, V. (2000). New concept of adaptive beamforming for moving sources and impulse noise environment. Signal Processing. https://doi.org/10.1016/S0165-1684(00)00094-3

    Article  MATH  Google Scholar 

  20. Lee, M. S., Katkovnik, V., & Kim, Y. H. (2004). Robust approximate median beamforming for phased array radar with antenna switching. Signal Processing. https://doi.org/10.1016/j.sigpro.2004.05.007

    Article  MATH  Google Scholar 

  21. Abu Hilal, H. (2019). Error rate analysis of ZF and MMSE decoders for massive multi cell MIMO systems in impulsive noise channels. International Journal of Wireless Information Networks. https://doi.org/10.1007/s10776-019-00422

    Article  Google Scholar 

  22. Juwono, F. H., Reine, R., Liu, L. (2016) Performance of impulsive noise blanking in precoded OFDM-based PLC systems. In IEEE International Conference on Communication Systems (ICCS), pp. 1–6, doi: https://doi.org/10.1109/ICCS.2016.7833562.

  23. Rabie K. M., & Alsusa, E. (2015) Performance analysis of adaptive hybrid nonlinear preprocessors for impulsive noise mitigation over power-line channels. In International Conference on Communications (ICC), pp. 728–733, doi: 10.1109/ ICC.2015. 7248408.

  24. Sarabchi, F., & Nerguizian, C. (2014) Impulsive noise mitigation for OFDM-based systems using enhanced blanking nonlinearity. In IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile RadioCommunication (PIMRC), pp. 841–845, doi: https://doi.org/10.1109/PIMRC.2014.7136282.

  25. Shhab, L., Rizaner, A., Ulusoy, A. H., & Amca, H. (2020). Suppressing the effect of impulsive noise on millimeter-wave communications systems. Radioengineering. https://doi.org/10.13164/RE.2020.0376

    Article  Google Scholar 

  26. Abu Hilal, H. (2017). Neural networks applications for CDMA systems in non-Gaussian multi-path channels. AEU—International Journal of Electronics and Communications, 73, 150–156. https://doi.org/10.1016/j.aeue.2017.01.006

    Article  Google Scholar 

  27. Barazideh, R., Niknam, S., Natarajan, B. (2019) Impulsive noise detection in OFDM-based systems: A deep learning perspective. In IEEE Annual Computing and Communication Workshop and Conference (CCWC), doi: https://doi.org/10.1109/CCWC.2019.8666489.

  28. Delgado, O., & Labeau, F. (2020) Deep learning decoder for MIMO communications with impulsive noise. In IEEE Consumer Communications and Networking Conference (CCNC), doi: https://doi.org/10.1109/CCNC46108.2020.9045329.

  29. Hmidat, A. M., Sharif, B. S., & Woo, W. L. (2004). Fuzzy decorrelating detector for non-Gaussian CDMA channel. Electronics Letters. https://doi.org/10.1049/el:20040595

    Article  Google Scholar 

  30. Ulusoy, A. H., & Rizaner, A. (2008). Adaptive path selective fuzzy decorrelating detector under impulsive noise for multipath fading CDMA systems. IEEE Communications Letters. https://doi.org/10.1109/LCOMM.2008.072012

    Article  Google Scholar 

  31. Ulusoy, A. H., & Rizaner, A. (2011). RBF network assisted adaptive path selective decorrelating detector under impulsive noise for multipath fading CDMA systems. Annals of Telecommunications-annales des Télécommunications. https://doi.org/10.1007/s12243-010-0212-0

    Article  Google Scholar 

  32. Crosby, T., Iglewicz, B., & Hoaglin, D. C. (1994). How to detect and handle outliers. Technometrics. https://doi.org/10.2307/1269377

    Article  Google Scholar 

  33. Alkhateeb, A., Leus, G., & Heath, R. W. (2015). Limited feedback hybrid precoding for multi-user millimeter wave systems. IEEE Transactions on Wireless Communications. https://doi.org/10.1109/TWC.2015.2455980

    Article  Google Scholar 

  34. Alkhateeb, A., El Ayach, O., Leus, G., & Heath, R. W. (2014). Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE Journal of Selected Topics in Signal Processing. https://doi.org/10.1109/JSTSP.2014.2334278

    Article  Google Scholar 

  35. Yu, X., Shen, J. C., Zhang, J., & Letaief, K. B. (2016). Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 10(3), 485–500. https://doi.org/10.1109/JSTSP.2016.2523903

    Article  Google Scholar 

  36. Mulla, M., Ulusoy, A. H., Rizaner, A., & Amca, H. (2020). Barzilai-borwein gradient algorithm based alternating minimization for single user millimeter wave systems. IEEE Wireless Communications Letters. https://doi.org/10.1109/LWC.2019.2960691

    Article  Google Scholar 

  37. Saleh, A. A. M., & Valenzuela, R. A. (1987). A statistical model for indoor multipath propagation. IEEE Journal on Selected Areas in Communications. https://doi.org/10.1109/JSAC.1987.1146527

    Article  Google Scholar 

  38. Raghavan, V., & Sayeed, A. M. (2011). Sublinear capacity scaling laws for sparse MIMO channels. IEEE Transactions on Information Theory. https://doi.org/10.1109/TIT.2010.2090255

    Article  MathSciNet  MATH  Google Scholar 

  39. Rizaner, A., Ulusoy, A. H., & Amca, H. (2016). Adaptive fuzzy assisted detector under impulsive noise for DVB-T systems. Optik (Stuttg), 127(13), 5196–5199. https://doi.org/10.1016/j.ijleo.2016.02.079

    Article  Google Scholar 

  40. Rusu, C., Mèndez-Rial, R., González-Prelcic, N., & Heath, R. W. (2016). Low complexity hybrid precoding strategies for millimeter wave communication systems. IEEE Transactions on Wireless Communications, 15(12), 8380–8393. https://doi.org/10.1109//TWC.2016.2614495

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MM, AR and AHU. The first draft of the manuscript was written by MM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mustafa Mulla.

Ethics declarations

Conflicts of interest

The author(s) declare(s) that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulla, M., Rizaner, A. & Ulusoy, A.H. Fuzzy Logic Based Decoder for Single-User Millimeter Wave Systems Under Impulsive Noise. Wireless Pers Commun 124, 1883–1895 (2022). https://doi.org/10.1007/s11277-021-09435-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09435-7

Keywords

Navigation