Abstract
The future communication will be highly data-driven, enabled by unlimited wireless connectivity. The emerging technologies are expected to fulfill the expectations not achieved with 4G, also the new technologies fusing artificial intelligence inspired applications in every corner of the world, such as the Internet of Things (IoT) with pervasive wireless connectivity. As one of the core techniques in 5G, the IoT will play a leading role in upcoming telecommunications, wearable systems, and unmanned vehicles. The innovative technologies employing interdisciplinary techniques are also expected to take advantage of the recent advancement in functional materials, semiconductor technologies, and metamaterials. Metamaterials are the materials of the future. Metamaterials are engineered materials whose electromagnetic and optical properties are determined by their structural design especially the unit cells. By the combination of different microscopic unit cell elements into large-scale designs, a new structure can be designed and fabricated with engineered properties required for new technologies. The presence of metamaterials has offered tunability, flexibility in design and has resulted in the enhancement of qualitative parameters of various electromagnetic structures like Antennas, filters, and resonators. In this review article, we focus on the concept, modeling, and advanced design approaches of metamaterials in the antenna structure. A comparative study of these structures with recent advancements and a futuristic approach is discussed at the end of the article, which will be beneficial for the young researchers.






Similar content being viewed by others
References
Veselago, V. G. (1968). The electrodynamics of substances with simultaneously negative values of μ and ε. Soviet Physics Uspekhi, 10(4), 509–514.
Ziolkowski, R. W. (2006). Metamaterial-based antennas: Research and developments. IEICE Transactions on Electronics, 89(9), 1267–1275.
Engheta, N., & Ziolkowski, R. W. (2005). A positive future for double-negative metamaterials. IEEE Transactions on Microwave Theory and Techniques, 53(4), 1535–1556.
Ramkrishna, S. A., & Grzegorczyk, T. A. (2009). Physics and application of negative refractive index material (pp. 24–27). CRC Press SPIE.
Pendry, J. B. (2000). Negative refraction makes a perfect lens. Physical Review Letters, 85(18), 3966–3969.
Smith, D. R., Pendry, J. B., & Wiltshire, M. C. K. (2004). Metamaterials and negative refractive index. Science, 305(5685), 788–792.
Schurig, D., et al. (2006). Metamaterial electromagnetic cloak at microwave frequencies. Science, 314(5801), 977–980.
Ziolkowski, R. W. (2014). Metamaterials: The early years in the USA. EPJ Applied Metamaterials, 1, 1–5.
Goel, T., & Patnaik, A. (2018). Novel broadband antennas for future mobile communications. IEEE Transactions on Antennas and Propagation, 66(5), 2299–2308.
Soukoulis, C. M., & Wegener, M. (2011). Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics, 5(9), 523–530.
Tao, H., Strikwerda, A. C., Fan, K., Padilla, W. J., Zhang, X., & Averitt, R. D. (2009). Reconfigurable terahertz metamaterials. Physical Review Letters, 103(14), 147401.
Ozbey, B., & Aktas, O. (2011). Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers. Optics Express, 19(7), s5741-5752.
Kumar, S., et al. (2020). Fifth generation antennas: A comprehensive review of design and performance enhancement techniques. IEEE Access Digital Object Identifier. https://doi.org/10.1109/ACCESS.2020.3020952
Sisinni, E., Saifullah, A., Han, S., Jennehag, U., & Gidlund, M. (2018). Industrial Internet of things: Challenges, opportunities, and directions. IEEE Transactions on Industrial Informatics, 14(11), 4724–4734.
Chettri, L., & Bera, R. (2020). A comprehensive survey on internet of things (IoT) toward 5G wireless systems. IEEE Internet of Things Journal, 7(1), 16–32.
Yiannis, J., Vardaxoglou, C. (2014). Metamaterial arrays and applications: FSS, EBG and AMC structures. In The 2014 international workshop on antenna technology.
Alibakhshikenari, M., et al. (2019). Mutual coupling suppression between two closely placed microstrip patches using EM-bandgap metamaterial fractal loading. IEEE Access, 7, 23606–23614.
Alibakhshikenari, M., et al. (2019). Mutual-coupling isolation using embedded metamaterial EM bandgap decoupling slab for densely packed array antennas. IEEE Access, 7, 51827–51840.
Liang, J.-J., Huang, G.-L., Zhao, J.-N., Gao, Z.-J., & Yuan, T. (2019). Wideband phase-gradient metasurface antenna with focused beams. IEEE Access, 7, 20767–20772.
Singha, R., & Vakula, D. (2017). Directive beam of the monopole antenna using broadband gradient refractive index metamaterial for ultra-wideband application. IEEE Access Digital Object Identifier. https://doi.org/10.1109/ACCESS.2017.2703876June
Ramli, A., Ismail, A., Raja, S. A., Abdullah, R., Mahdi, M. A., & Al-Hawari, A. R. H. (2018). Miniaturize negative index metamaterial structure loaded filtenna. Progress In Electromagnetics Research M, 72, 97–104.
Venkateswara Rao, M., Madhav, B. T. P., Anilkumar, T., & Prudhvi Nadh, B. (2018). Metamaterial inspired quad-band circularly polarized antenna for WLAN/ISM/Bluetooth/WiMAX and satellite communication applications. International Journal of Electronics and Communications (AEU), 97, 229–241.
Mark, R., Rajak, N., Mandal, K., & Das, S. (2019). Metamaterial based superstrate towards the isolation and gain enhancement of MIMO antenna for WLAN application. International Journal of Electronics and Communications (AEÜ), 100, 144–152.
Singh, A. K., Abegaonkar, M. P., & Koul, S. K. (2018). Miniaturized multiband microstrip patch antenna using metamaterial loading for wireless application. Progress In Electromagnetics Research C, 83, 71–82.
Daniel, R. S., Pandeeswari, R., & Raghavan, S. (2017). Design and analysis of open complementary split ring resonators loaded monopole antenna for multiband operation. Progress In Electromagnetics Research C, 78, 173–182.
Saghanezhad, S. A. H., & Atlasbaf, Z. (2015). Miniaturized dual-band CPW-fed antennas loaded with U-shaped metamaterials. IEEE Antennas and Wireless Propagation Letters, 14, 658–661.
Li, K., Zhu, C., Li, L., Cai, Y.-M., & Liang, C.-H. (2013). Design of electrically small metamaterial antenna with ELC and EBG loading. IEEE Antennas And Wireless Propagation Letters, 12, 678–681.
Varamini, G., Keshtkar, A., & Naser-Moghadasi, M. (2018). Miniaturization of a microstrip loop antenna for wireless applications based on metamaterial metasurface. International Journal of Electronics and Communications (AEU), 83, s32-39.
Varamini, G., Keshtkar, A., & Naser-Moghadasi, M. (2018). “Microstrip Sierpinski fractal carpet for slot antenna with metamaterial loads for dual-band wireless application. International Journal of Electronics and Communications (AEÜ), 84, 93–99.
Saravanan, M., Beslin Geo, V., & Umarani, S. M. (2018). Gain enhancement of patch antenna integrated with metamaterial inspired superstrate. Science Direct, Journal of Electrical Systems and Information Technology, 5, 263–272.
Feng, B., Lai, J., Zeng, Q., & Chung, K. L. (2018). A dual-wideband and high gain magneto-electric dipole antenna and its 3D MIMO system with metasurface for 5G/WiMAX/WLAN/X-band applications. IEEE Access, 6, 33387–33398.
El-Nady, S., Zamel, H. M., Hendy, M., Zekry, A. H. A., & Attiya, A. M. (2018). Gain enhancement of a millimeter-wave antipodal vivaldi antenna by epsilon-near-zero metamaterial. Progress In Electromagnetics Research C, 85, 105–116.
Liu, L.-Y., & Lu, J.-Q. (2018). Compact broadband end-fire antenna with metamaterial transmission line. Progress In Electromagnetics Research Letters, 73, 37–44.
Wang, Y., Xu, X., & Deng, X. (2018). A miniature H-shaped patch antenna loaded with mushroom metamaterials. Progress In Electromagnetics Research Letters, 78, 135–139.
Zhang, J., Li, J., & Chen, J. (2019). Mutual coupling reduction of a circularly polarized four-element antenna array using metamaterial absorber for unmanned vehicles. IEEE Access, 7, 57469–57475.
Elwi, T. A. (2019). Novel UWB printed metamaterial microstrip antenna based organic substrates for RF-energy harvesting applications. International Journal of Electronics and Communications (AEÜ), 101, 44–53.
Chaturvedi, D., & Raghavan, S. (2018). SRR-loaded metamaterial-inspired electrically-small monopole antenna. Progress In Electromagnetics Research C, 81, 11–19.
Zheng, Q.-R., Lin, B.-C., & Zhou, B.-H. (2018). Design of high gain lens antenna by using 100% transmitting metamaterials. Progress In Electromagnetics Research C, 86, 167–176.
Simruni, M., & Jam, S. (2017). A circularly-polarized compact wideband patch antenna loaded by metamaterial structures. Progress In Electromagnetics Research C, 78, 93–104.
Pramono, S., & Subagio, B. B. (2018). Mutual coupling reduction and bandwidth enhancement using a simple folded slot-partial ground plane in Dualband MIMO antenna. International Seminar on Intelligent Technology and Its Applications (ISITIA), 2018, 19–22. https://doi.org/10.1109/ISITIA.2018.8711213
Jafargholi, A., Jafargholi, A., & Choi, J. H. (2019). Mutual coupling reduction in an array of patch antennas using CLL metamaterial superstrate for MIMO applications. IEEE Transactions on Antennas and Propagation, 67(1), 179–189. https://doi.org/10.1109/TAP.2018.2874747
Qamar, Z., Naeem, U., Khan, S. A., Chongcheawchamnan, M., & Shafique, M. F. (2016). Mutual coupling reduction for high performance densely packed patch antenna arrays on finite substrate. IEEE Transactions on Antennas and Propagation, 64(5), 1653–1660.
Lee, J. Y., Kim, S. H., & Jang, J. H. (2015). Reduction of mutual coupling in planar multiple antenna by using 1D EBG and SRR structures. IEEE Transactions on Antennas and Propagation, 63(9), 4194–4198.
Tang, M. C., Chen, Z., Wang, H., Li, M., Luo, B., Wang, J., Shi, Z., & Ziolkowski, R. W. (2017). Mutual coupling reduction using meta-structures for wideband, dual-polarized, high-density patch arrays. IEEE Transactions on Antennas and Propagation, 65(8), 3986–3998.
Alibakhshikenari, M., et al. (2020). A comprehensive survey on various decoupling mechanisms with focus on metamaterial and metasurface principles applicable to SAR and MIMO antenna systems. IEEE Access, 8, 192965–193004. https://doi.org/10.1109/ACCESS.2020.3032826
Chen, X., Zhang, S., & Li, Q. (2018). A review of mutual coupling in MIMO systems. IEEE Access, 6, 24706–24719. https://doi.org/10.1109/ACCESS.2018.2830653
Farahani, M., Pourahmadazar, J., Akbari, M., Nedil, M., Sebak, A. R., & Denidni, T. A. (2017). Mutual coupling reduction in millimeter-wave MIMO antenna array using a metamaterial polarization-rotator wall. IEEE Antennas and Wireless Propagation Letters, 16, 2324–2327. https://doi.org/10.1109/LAWP.2017.2717404
Khaleel, H. R., Al-Rizzo, H. M., Rucker, D. G., Rahmatallah, Y. A., & Mohan, S. (2011). Mutual coupling reduction of dual-band printed monopoles using MNG metamaterial. IEEE International Symposium on Antennas and Propagation (APSURSI), 2011, 2219–2222. https://doi.org/10.1109/APS.2011.5996956
Zhai, G., Chen, Z. N., & Qing, X. (2015). Mutual coupling reduction of compact four-element MIMO slot antennas using metamaterial mushroom structures. International Workshop on Antenna Technology (iWAT), 2015, 3–6. https://doi.org/10.1109/IWAT.2015.7365342
Fertas, K., Ghanem, F., Azrar, A., & Aksas, R. (2020). UWB antenna with sweeping dual notch based on metamaterial SRR fictive rotation. Microwave and Optical Technology Letters, 62(2), 956–963.
Yu, N., et al. (2011). Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science, 334(6054), 333–337.
Kildishev, A. V., Boltasseva, A., & Shalaev, V. M. (2013). Planar photonics with metasurfaces. Science, 339(6125), 1232009.
Hadad, Y., Sounas, D. L., & Alù, A. (2015). Space-time gradient metasurfaces. Physical Review B: Condensed Matter, 92(10), 100304.
Shaltout, A., Kildishev, A., & Shalaev, V. (2015). Time-varying metasurfaces and Lorentz nonreciprocity. Optical Materials Express, 5(11), 2459–2467.
Hrabar, S. (2018). First ten years of active metamaterial structures with ‘negative’ elements. EPJ Applied Metamaterials, 5, 9.
Nookala, N., et al. (2016). Ultrathin gradient nonlinear metasurfaces with giant nonlinear response. Optica, 3(3), 283–288.
Lee, J., et al. (2014). Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature, 511(7507), 65–69.
Liu, S., et al. (2018). An all-dielectric metasurface as a broadband optical frequency mixer. Nature Communication, 9, 2507.
Kumar, S., Dixit, A. S., Malekar, R. R., Raut, H. D., & Shevada, L. K. (2020). Fifth generation antennas: a comprehensive review of design and performance enhancement techniques. IEEE Access, 8, 163568–163593.
Funding
No funding is received for this work.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
There is no conflicts of interests for this work and is completely transparent for data and material availability. No custom software is used for carrying out this work.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kulkarni, S., Mishra, A. Metamaterials: Advancement and Futuristic Design Approach. Wireless Pers Commun 124, 2075–2095 (2022). https://doi.org/10.1007/s11277-021-09445-5
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-021-09445-5