Skip to main content

Advertisement

Log in

Metamaterials: Advancement and Futuristic Design Approach

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The future communication will be highly data-driven, enabled by unlimited wireless connectivity. The emerging technologies are expected to fulfill the expectations not achieved with 4G, also the new technologies fusing artificial intelligence inspired applications in every corner of the world, such as the Internet of Things (IoT) with pervasive wireless connectivity. As one of the core techniques in 5G, the IoT will play a leading role in upcoming telecommunications, wearable systems, and unmanned vehicles. The innovative technologies employing interdisciplinary techniques are also expected to take advantage of the recent advancement in functional materials, semiconductor technologies, and metamaterials. Metamaterials are the materials of the future. Metamaterials are engineered materials whose electromagnetic and optical properties are determined by their structural design especially the unit cells. By the combination of different microscopic unit cell elements into large-scale designs, a new structure can be designed and fabricated with engineered properties required for new technologies. The presence of metamaterials has offered tunability, flexibility in design and has resulted in the enhancement of qualitative parameters of various electromagnetic structures like Antennas, filters, and resonators. In this review article, we focus on the concept, modeling, and advanced design approaches of metamaterials in the antenna structure. A comparative study of these structures with recent advancements and a futuristic approach is discussed at the end of the article, which will be beneficial for the young researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Veselago, V. G. (1968). The electrodynamics of substances with simultaneously negative values of μ and ε. Soviet Physics Uspekhi, 10(4), 509–514.

    Article  Google Scholar 

  2. Ziolkowski, R. W. (2006). Metamaterial-based antennas: Research and developments. IEICE Transactions on Electronics, 89(9), 1267–1275.

    Article  Google Scholar 

  3. Engheta, N., & Ziolkowski, R. W. (2005). A positive future for double-negative metamaterials. IEEE Transactions on Microwave Theory and Techniques, 53(4), 1535–1556.

    Article  Google Scholar 

  4. Ramkrishna, S. A., & Grzegorczyk, T. A. (2009). Physics and application of negative refractive index material (pp. 24–27). CRC Press SPIE.

    Google Scholar 

  5. Pendry, J. B. (2000). Negative refraction makes a perfect lens. Physical Review Letters, 85(18), 3966–3969.

    Article  Google Scholar 

  6. Smith, D. R., Pendry, J. B., & Wiltshire, M. C. K. (2004). Metamaterials and negative refractive index. Science, 305(5685), 788–792.

    Article  Google Scholar 

  7. Schurig, D., et al. (2006). Metamaterial electromagnetic cloak at microwave frequencies. Science, 314(5801), 977–980.

    Article  MathSciNet  Google Scholar 

  8. Ziolkowski, R. W. (2014). Metamaterials: The early years in the USA. EPJ Applied Metamaterials, 1, 1–5.

  9. Goel, T., & Patnaik, A. (2018). Novel broadband antennas for future mobile communications. IEEE Transactions on Antennas and Propagation, 66(5), 2299–2308.

    Article  Google Scholar 

  10. Soukoulis, C. M., & Wegener, M. (2011). Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics, 5(9), 523–530.

    Article  Google Scholar 

  11. Tao, H., Strikwerda, A. C., Fan, K., Padilla, W. J., Zhang, X., & Averitt, R. D. (2009). Reconfigurable terahertz metamaterials. Physical Review Letters, 103(14), 147401.

    Article  Google Scholar 

  12. Ozbey, B., & Aktas, O. (2011). Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers. Optics Express, 19(7), s5741-5752.

    Article  Google Scholar 

  13. Kumar, S., et al. (2020). Fifth generation antennas: A comprehensive review of design and performance enhancement techniques. IEEE Access Digital Object Identifier. https://doi.org/10.1109/ACCESS.2020.3020952

    Article  Google Scholar 

  14. Sisinni, E., Saifullah, A., Han, S., Jennehag, U., & Gidlund, M. (2018). Industrial Internet of things: Challenges, opportunities, and directions. IEEE Transactions on Industrial Informatics, 14(11), 4724–4734.

    Article  Google Scholar 

  15. Chettri, L., & Bera, R. (2020). A comprehensive survey on internet of things (IoT) toward 5G wireless systems. IEEE Internet of Things Journal, 7(1), 16–32.

    Article  Google Scholar 

  16. Yiannis, J., Vardaxoglou, C. (2014). Metamaterial arrays and applications: FSS, EBG and AMC structures. In The 2014 international workshop on antenna technology.

  17. Alibakhshikenari, M., et al. (2019). Mutual coupling suppression between two closely placed microstrip patches using EM-bandgap metamaterial fractal loading. IEEE Access, 7, 23606–23614.

    Article  Google Scholar 

  18. Alibakhshikenari, M., et al. (2019). Mutual-coupling isolation using embedded metamaterial EM bandgap decoupling slab for densely packed array antennas. IEEE Access, 7, 51827–51840.

    Article  Google Scholar 

  19. Liang, J.-J., Huang, G.-L., Zhao, J.-N., Gao, Z.-J., & Yuan, T. (2019). Wideband phase-gradient metasurface antenna with focused beams. IEEE Access, 7, 20767–20772.

    Article  Google Scholar 

  20. Singha, R., & Vakula, D. (2017). Directive beam of the monopole antenna using broadband gradient refractive index metamaterial for ultra-wideband application. IEEE Access Digital Object Identifier. https://doi.org/10.1109/ACCESS.2017.2703876June

    Article  Google Scholar 

  21. Ramli, A., Ismail, A., Raja, S. A., Abdullah, R., Mahdi, M. A., & Al-Hawari, A. R. H. (2018). Miniaturize negative index metamaterial structure loaded filtenna. Progress In Electromagnetics Research M, 72, 97–104.

    Article  Google Scholar 

  22. Venkateswara Rao, M., Madhav, B. T. P., Anilkumar, T., & Prudhvi Nadh, B. (2018). Metamaterial inspired quad-band circularly polarized antenna for WLAN/ISM/Bluetooth/WiMAX and satellite communication applications. International Journal of Electronics and Communications (AEU), 97, 229–241.

    Article  Google Scholar 

  23. Mark, R., Rajak, N., Mandal, K., & Das, S. (2019). Metamaterial based superstrate towards the isolation and gain enhancement of MIMO antenna for WLAN application. International Journal of Electronics and Communications (AEÜ), 100, 144–152.

    Article  Google Scholar 

  24. Singh, A. K., Abegaonkar, M. P., & Koul, S. K. (2018). Miniaturized multiband microstrip patch antenna using metamaterial loading for wireless application. Progress In Electromagnetics Research C, 83, 71–82.

    Article  Google Scholar 

  25. Daniel, R. S., Pandeeswari, R., & Raghavan, S. (2017). Design and analysis of open complementary split ring resonators loaded monopole antenna for multiband operation. Progress In Electromagnetics Research C, 78, 173–182.

    Article  Google Scholar 

  26. Saghanezhad, S. A. H., & Atlasbaf, Z. (2015). Miniaturized dual-band CPW-fed antennas loaded with U-shaped metamaterials. IEEE Antennas and Wireless Propagation Letters, 14, 658–661.

    Article  Google Scholar 

  27. Li, K., Zhu, C., Li, L., Cai, Y.-M., & Liang, C.-H. (2013). Design of electrically small metamaterial antenna with ELC and EBG loading. IEEE Antennas And Wireless Propagation Letters, 12, 678–681.

    Article  Google Scholar 

  28. Varamini, G., Keshtkar, A., & Naser-Moghadasi, M. (2018). Miniaturization of a microstrip loop antenna for wireless applications based on metamaterial metasurface. International Journal of Electronics and Communications (AEU), 83, s32-39.

    Article  Google Scholar 

  29. Varamini, G., Keshtkar, A., & Naser-Moghadasi, M. (2018). “Microstrip Sierpinski fractal carpet for slot antenna with metamaterial loads for dual-band wireless application. International Journal of Electronics and Communications (AEÜ), 84, 93–99.

    Article  Google Scholar 

  30. Saravanan, M., Beslin Geo, V., & Umarani, S. M. (2018). Gain enhancement of patch antenna integrated with metamaterial inspired superstrate. Science Direct, Journal of Electrical Systems and Information Technology, 5, 263–272.

    Article  Google Scholar 

  31. Feng, B., Lai, J., Zeng, Q., & Chung, K. L. (2018). A dual-wideband and high gain magneto-electric dipole antenna and its 3D MIMO system with metasurface for 5G/WiMAX/WLAN/X-band applications. IEEE Access, 6, 33387–33398.

    Article  Google Scholar 

  32. El-Nady, S., Zamel, H. M., Hendy, M., Zekry, A. H. A., & Attiya, A. M. (2018). Gain enhancement of a millimeter-wave antipodal vivaldi antenna by epsilon-near-zero metamaterial. Progress In Electromagnetics Research C, 85, 105–116.

    Article  Google Scholar 

  33. Liu, L.-Y., & Lu, J.-Q. (2018). Compact broadband end-fire antenna with metamaterial transmission line. Progress In Electromagnetics Research Letters, 73, 37–44.

    Article  Google Scholar 

  34. Wang, Y., Xu, X., & Deng, X. (2018). A miniature H-shaped patch antenna loaded with mushroom metamaterials. Progress In Electromagnetics Research Letters, 78, 135–139.

    Article  Google Scholar 

  35. Zhang, J., Li, J., & Chen, J. (2019). Mutual coupling reduction of a circularly polarized four-element antenna array using metamaterial absorber for unmanned vehicles. IEEE Access, 7, 57469–57475.

    Article  Google Scholar 

  36. Elwi, T. A. (2019). Novel UWB printed metamaterial microstrip antenna based organic substrates for RF-energy harvesting applications. International Journal of Electronics and Communications (AEÜ), 101, 44–53.

    Article  Google Scholar 

  37. Chaturvedi, D., & Raghavan, S. (2018). SRR-loaded metamaterial-inspired electrically-small monopole antenna. Progress In Electromagnetics Research C, 81, 11–19.

    Article  Google Scholar 

  38. Zheng, Q.-R., Lin, B.-C., & Zhou, B.-H. (2018). Design of high gain lens antenna by using 100% transmitting metamaterials. Progress In Electromagnetics Research C, 86, 167–176.

    Article  Google Scholar 

  39. Simruni, M., & Jam, S. (2017). A circularly-polarized compact wideband patch antenna loaded by metamaterial structures. Progress In Electromagnetics Research C, 78, 93–104.

    Article  Google Scholar 

  40. Pramono, S., & Subagio, B. B. (2018). Mutual coupling reduction and bandwidth enhancement using a simple folded slot-partial ground plane in Dualband MIMO antenna. International Seminar on Intelligent Technology and Its Applications (ISITIA), 2018, 19–22. https://doi.org/10.1109/ISITIA.2018.8711213

    Article  Google Scholar 

  41. Jafargholi, A., Jafargholi, A., & Choi, J. H. (2019). Mutual coupling reduction in an array of patch antennas using CLL metamaterial superstrate for MIMO applications. IEEE Transactions on Antennas and Propagation, 67(1), 179–189. https://doi.org/10.1109/TAP.2018.2874747

    Article  Google Scholar 

  42. Qamar, Z., Naeem, U., Khan, S. A., Chongcheawchamnan, M., & Shafique, M. F. (2016). Mutual coupling reduction for high performance densely packed patch antenna arrays on finite substrate. IEEE Transactions on Antennas and Propagation, 64(5), 1653–1660.

    Article  Google Scholar 

  43. Lee, J. Y., Kim, S. H., & Jang, J. H. (2015). Reduction of mutual coupling in planar multiple antenna by using 1D EBG and SRR structures. IEEE Transactions on Antennas and Propagation, 63(9), 4194–4198.

    Article  Google Scholar 

  44. Tang, M. C., Chen, Z., Wang, H., Li, M., Luo, B., Wang, J., Shi, Z., & Ziolkowski, R. W. (2017). Mutual coupling reduction using meta-structures for wideband, dual-polarized, high-density patch arrays. IEEE Transactions on Antennas and Propagation, 65(8), 3986–3998.

    Article  Google Scholar 

  45. Alibakhshikenari, M., et al. (2020). A comprehensive survey on various decoupling mechanisms with focus on metamaterial and metasurface principles applicable to SAR and MIMO antenna systems. IEEE Access, 8, 192965–193004. https://doi.org/10.1109/ACCESS.2020.3032826

    Article  Google Scholar 

  46. Chen, X., Zhang, S., & Li, Q. (2018). A review of mutual coupling in MIMO systems. IEEE Access, 6, 24706–24719. https://doi.org/10.1109/ACCESS.2018.2830653

    Article  Google Scholar 

  47. Farahani, M., Pourahmadazar, J., Akbari, M., Nedil, M., Sebak, A. R., & Denidni, T. A. (2017). Mutual coupling reduction in millimeter-wave MIMO antenna array using a metamaterial polarization-rotator wall. IEEE Antennas and Wireless Propagation Letters, 16, 2324–2327. https://doi.org/10.1109/LAWP.2017.2717404

    Article  Google Scholar 

  48. Khaleel, H. R., Al-Rizzo, H. M., Rucker, D. G., Rahmatallah, Y. A., & Mohan, S. (2011). Mutual coupling reduction of dual-band printed monopoles using MNG metamaterial. IEEE International Symposium on Antennas and Propagation (APSURSI), 2011, 2219–2222. https://doi.org/10.1109/APS.2011.5996956

    Article  Google Scholar 

  49. Zhai, G., Chen, Z. N., & Qing, X. (2015). Mutual coupling reduction of compact four-element MIMO slot antennas using metamaterial mushroom structures. International Workshop on Antenna Technology (iWAT), 2015, 3–6. https://doi.org/10.1109/IWAT.2015.7365342

    Article  Google Scholar 

  50. Fertas, K., Ghanem, F., Azrar, A., & Aksas, R. (2020). UWB antenna with sweeping dual notch based on metamaterial SRR fictive rotation. Microwave and Optical Technology Letters, 62(2), 956–963.

    Article  Google Scholar 

  51. Yu, N., et al. (2011). Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science, 334(6054), 333–337.

    Article  Google Scholar 

  52. Kildishev, A. V., Boltasseva, A., & Shalaev, V. M. (2013). Planar photonics with metasurfaces. Science, 339(6125), 1232009.

    Article  Google Scholar 

  53. Hadad, Y., Sounas, D. L., & Alù, A. (2015). Space-time gradient metasurfaces. Physical Review B: Condensed Matter, 92(10), 100304.

    Article  Google Scholar 

  54. Shaltout, A., Kildishev, A., & Shalaev, V. (2015). Time-varying metasurfaces and Lorentz nonreciprocity. Optical Materials Express, 5(11), 2459–2467.

    Article  Google Scholar 

  55. Hrabar, S. (2018). First ten years of active metamaterial structures with ‘negative’ elements. EPJ Applied Metamaterials, 5, 9.

    Article  Google Scholar 

  56. Nookala, N., et al. (2016). Ultrathin gradient nonlinear metasurfaces with giant nonlinear response. Optica, 3(3), 283–288.

    Article  Google Scholar 

  57. Lee, J., et al. (2014). Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature, 511(7507), 65–69.

    Article  Google Scholar 

  58. Liu, S., et al. (2018). An all-dielectric metasurface as a broadband optical frequency mixer. Nature Communication, 9, 2507.

    Article  Google Scholar 

  59. Kumar, S., Dixit, A. S., Malekar, R. R., Raut, H. D., & Shevada, L. K. (2020). Fifth generation antennas: a comprehensive review of design and performance enhancement techniques. IEEE Access, 8, 163568–163593.

    Article  Google Scholar 

Download references

Funding

No funding is received for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidhant Kulkarni.

Ethics declarations

Conflict of interest

There is no conflicts of interests for this work and is completely transparent for data and material availability. No custom software is used for carrying out this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, S., Mishra, A. Metamaterials: Advancement and Futuristic Design Approach. Wireless Pers Commun 124, 2075–2095 (2022). https://doi.org/10.1007/s11277-021-09445-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09445-5

Keywords