Skip to main content

Advertisement

Log in

Multi-User Transmit Beamforming for Achieving Higher Capacity and Reliability in 5G Standards

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Multi-user multiple input multiple output (MU-MIMO) serves multiple users simultaneously by sharing the same channel and bandwidth. The performance degrades in presence of multi-user interference. The multi-user beamforming (precoding) techniques came into existence to tackle these interference. This paper investigates the performance of downlink MU-MIMO by optimally designing the transmit beamforming with known channel state information at the transmitter (CSIT). Several linear precoding algorithms are employed to accomplish this goal. However, linear precoding techniques such as maximum ratio transmission (MRT), zero forcing (ZF) and minimum mean square error (MMSE) do not provide achievable performance at all signal to noise ratios (SNRs) equally. The transmit beamforming can be designed optimally by formulating the convex optimization problem. This optimal multi-user beamforming improves the performance at all SNRs. Practically, it is hard to get the optimal solution for non convex problems. Therefore, multi-user performance is improved over linear precoding algorithms at all signal levels by introducing joint processing techniques of both linear and non-linear types. Tomlinson Harashima precoding (THP) is a non-linear precoding technique which provides the best solution to improve the performance at high SNR by minimizing the multi-user interference. This paper uses two non-linear algorithms based THP such as MMSE-THP and ZF-THP. The performance of the schemes have been evaluated both by analysis and simulations. It has been observed that MMSE-THP attains significant performance improvement over ZF-THP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., & Tufvesson, F. (2013). Scaling up mimo: Opportunities and challenges with very large arrays. IEEE signal processing magazine, 30(1), 40–60.

    Article  Google Scholar 

  2. Hiraguri, T., & Nishimori, K. (2015). Survey of transmission methods and efficiency using mimo technologies for wireless lan systems. IEICE Transactions on Communications, 98(7), 1250–1267.

    Article  Google Scholar 

  3. Paulraj, A., Nabar, R., & Gore, D. (2003). Introduction to space-time wireless communications. Cambridge: Cambridge university press.

    Google Scholar 

  4. Zheng, L., & Tse, D. N. C. (2003). Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels. IEEE Transactions on information theory, 49(5), 1073–1096.

    Article  Google Scholar 

  5. Peel, C.B., Spencer, Q.H., Swindlehurst, A.L., & Haardt, M. (2004). An introduction to the multi-user mimo downlink. IEEE communications Magazine, 61.

  6. Moussa, K. H., El-Khamy, S. E., & El-Sherif, A. A. (2017). Performance of enhanced massive multiuser mimo systems using transmit beamforming and transmit antenna selection techniques. Wireless Personal Communications SP, 94, 1825–1838.

    Article  Google Scholar 

  7. Van Veen, B. D., & Buckley, K. M. (1988). Beamforming: A versatile approach to spatial filtering. IEEE assp Magazine, 5(2), 4–24.

    Article  Google Scholar 

  8. Vook, FW., Ghosh, A, & Thomas, TA. (2004). Mimo and beamforming solutions for 5g technology. In: Microwave Symposium (IMS), 2014 IEEE MTT-S International, (pp. 1–4). IEEE.

  9. Mehana, A. H., & Nosratinia, A. (2014). Diversity of mimo linear precoding. IEEE Transactions on Information Theory, 60(2), 1019–1038.

    Article  MathSciNet  Google Scholar 

  10. W. Tan, W. Huang, X. Yang, Z. Shi, W. Liu, & Lisheng, F. (2018). Multiuser precoding scheme and achievable rate analysis for massive mimo system. Wireless Personal Communications, 210, 1–12.

  11. Shao, X., Yuan, J., & Shao, Y. (2007). Error performance analysis of linear zero forcing and mmse precoders for mimo broadcast channels. IET Communications, 1(5), 1067–1074.

    Article  Google Scholar 

  12. Peel, C. B., Hochwald, B. M., & Swindlehurst, A. L. (2005). A vector-perturbation technique for near-capacity multiantenna multiuser communication-part i: channel inversion and regularization. IEEE Transactions on Communications, 53(1), 195–202.

    Article  Google Scholar 

  13. Gershman, A. B., Sidiropoulos, N. D., Shahbazpanahi, S., Bengtsson, M., & Ottersten, B. (2010). Convex optimization-based beamforming. IEEE Signal Processing Magazine, 27(3), 62–75.

    Article  Google Scholar 

  14. Bjornson, E., Bengtsson, M., & Ottersten, B. (2014). Optimal multiuser transmit beamforming: A difficult problem with a simple solution structure [lecture notes]. IEEE Signal Processing Magazine, 31(4), 142–148.

    Article  Google Scholar 

  15. Palomar, D., Lagunas, M. A., & Cioffi, J. M. (2004). Optimum linear joint transmit-receive processing for mimo channels with qos constraints. IEEE Transactions on Signal Processing, 52(5), 1179–1197.

    Article  MathSciNet  Google Scholar 

  16. Daniel, C., Adão, S., & Atílio, G. (2013). Linear and nonlinear precoding schemes for centralized multicell mimo-ofdm systems. Wireless Personal Communications, 9, 759–777.

    Google Scholar 

  17. Windpassinger, C., Fischer, R. F. H., Vencel, T., & Huber, J. B. (2004). Precoding in multiantenna and multiuser communications. IEEE Transactions on Wireless Communications, 3(4), 1305–1316.

    Article  Google Scholar 

  18. Huang M., Zhang X., Zhou S., & Wang J. (2007). Tomlinson-harashima precoding in multiuser mimo systems with imperfect channel state information. In: Global Telecommunications Conference, 2007. GLOBECOM’07. IEEE, (pp. 2806–2810). IEEE.

  19. Liu, J., & Kizymien, W. A. (2007). Improved tomlinson-harashima precoding for the downlink of multi-user mimo systems. Canadian Journal of Electrical and Computer Engineering, 32(3), 133–144.

    Article  Google Scholar 

  20. Björnson, E., Jorswieck, E., et al. (2013). Optimal resource allocation in coordinated multi-cell systems. Foundations and Trends® in Communications and Information Theory, 72, 113–381.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelima Namburi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namburi, N., Rani, N.D. & Bera, D. Multi-User Transmit Beamforming for Achieving Higher Capacity and Reliability in 5G Standards. Wireless Pers Commun 124, 2211–2227 (2022). https://doi.org/10.1007/s11277-021-09452-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09452-6

Keywords

Navigation