Skip to main content

Advertisement

Log in

Contiki IEEE 802.15.4 MAC Layer Protocols: Implementation and Evaluation of Node’s Throughput and Power Consumption

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In wireless sensor networks, providing flexibility in the selection of Medium Access Control (MAC) protocols to be implemented in an operating system (OS) becomes critical to best meet the requirements of each certain application. Since OS architecture and network stack protocol overhead have an effect on a node’s ability to transmit data, analytical studies often fail to foretell the achievable throughput from an application’s perspective. In Contiki OS, there are constraints at the specific level of the network stack and due to implementation of the provided MAC layer protocol, IEEE 802.15.4 unslotted CSMA/CA, which limit node’s throughput and the available bandwidth in IEEE 802.15.4-based networks and as a result impact node’s power consumption. In this paper, a TDMA-based MAC scheme, namely, lightweight time division multiple access (L-TDMA), is developed and implemented on Contiki to achieve high throughput and low power consumption by overcoming the existing constraints on the networking stack’s implementation of MAC layer on Contiki. The L-TDMA MAC scheme’s performance is evaluated using simulation and experimental testbed to determine its effectiveness and efficiency in comparison to different versions of IEEE 802.15.4 CSMA/CA-based protocols. The results demonstrate that L-TDMA scheme can significantly enhance node’s throughput, average channel throughput, power efficiency, and prolong battery lifespan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data is obtained on execution of the developed code.

Code Availability

Once the paper is published, the code will be uploaded in GitHub.

References

  1. Abdulkarem, M., Samsudin, K., Rokhani, F. Z., & Rasid, M. F. A. (2019). Wireless sensor network for structural health monitoring: A contemporary review of technologies, challenges and future direction. Structural Health Monitoring-An International Journal. https://doi.org/10.1177/1475921719854528.

    Article  Google Scholar 

  2. Pandey, A. K., & Gupta, N. (2020). An energy efficient distributed queuing random access (EE-DQRA) MAC protocol for wireless body sensor networks. Wireless Networks, 26(4), 2875–2889.

    Article  Google Scholar 

  3. Contiki: The open source operating system for the Internet of Things. [Online] Available: http://www.contiki-os.org/. Accessed: 2021-11-14.

  4. Roussel, K., & Song, Y.-Q. (2013). A critical analysis of Contiki’s network stack for integrating new MAC protocols. Ph.D. thesis, INRIA Nancy.

  5. Farooq, M. O., & Kunz, T. (2015). Contiki-based IEEE 802.15. 4 channel capacity estimation and suitability of its CSMA-CA MAC layer protocol for real-time multimedia applications. Mobile Information Systems, 2015. https://doi.org/10.1155/2015/398637.

  6. Tall, H., Chalhoub, G., & Misson, M. (2016). Implementation and performance evaluation of IEEE 802.15. 4 unslotted CSMA/CA protocol on Contiki OS. Annals of Telecommunications, 71(9–10), 517–526.

    Article  Google Scholar 

  7. Yazdi, F. R., Hosseinzadeh, M., & Jabbehdari, S. (2019). A priority-based mac protocol for energy consumption and delay guaranteed in wireless body area networks. Wireless Personal Communications, 108(3), 1677–1696.

    Article  Google Scholar 

  8. Sordi, M. A., Rayel, O. K., Moritz, G. L., & Rebelatto, J. L. (2020). Towards improving TSCH energy efficiency: An analytical approach to a practical implementation. Sensors, 20(21), 6047.

    Article  Google Scholar 

  9. Kundaliya, A., & Lobiya, D. (2020). CL-TPC: A cross layer transmission power control protocol for routing in WSN. In 2020 International conference on smart electronics and communication (ICOSEC), pp. 690–697. IEEE.

  10. Rasheed, M. B., Javaid, N., Imran, M., Khan, Z. A., Qasim, U., & Vasilakos, A. (2017). Delay and energy consumption analysis of priority guaranteed MAC protocol for wireless body area networks. Wireless Networks, 23(4), 1249–1266.

    Article  Google Scholar 

  11. Hayat, S., Javaid, N., Khan, Z. A., Shareef, A., Mahmood, A., & Bouk, S. H. (2012). Energy efficient MAC protocols. In 2012 IEEE 14th international conference on high performance computing and communication & 2012 IEEE 9th international conference on embedded software and systems, pp. 1185–1192. IEEE.

  12. Henna, S., & Sarwar, M. A. (2018). An adaptive backoff mechanism for IEEE 802.15. 4 beacon-enabled wireless body area networks. Wireless Communications and Mobile Computing, 2018. https://doi.org/10.1155/2018/9782605

  13. Jäger, S., Jungebloud, T., Maschotta, R., & Zimmermann, A. (2016). Model-based QOS evaluation and validation for embedded wireless sensor networks. IEEE Systems Journal, 10(2), 592–603.

    Article  Google Scholar 

  14. Gangwar, M., & Kumar, R. (2017). An approach to improve BEST-MAC: Bitmap assisted efficient scalable TDMA-based MaC protocol using optimal cluster head selection. In 2017 2nd international conference on telecommunication and networks (TEL-NET), pp. 1–5. IEEE.

  15. Mustafa, M. M., & Parthasarathy, V. (2021). A clustering TDMA and code block binding algorithms to enhance the node energy and security of the network. Wireless Personal Communications, 116(1), 767–775.

    Article  Google Scholar 

  16. Deruyck, M., Hoebeke, J., De Poorter, E., Tanghe, E., Moerman, I., Demeester, P., et al. (2018). Intelligent TDMA heuristic scheduling by taking into account physical layer interference for an industrial IoT environment. Telecommunication Systems, 67(4), 605–617.

    Article  Google Scholar 

  17. Javaid, N., Israr, I., Khan, M. A., Javaid, A., Bouk, S. H., & Khan, Z. A. (2013). Analyzing medium access techniques in wireless body area networks. arXiv preprint arXiv:1304.1047

  18. Siddavaatam, P., & Sedaghat, R. (2020). A novel multi-objective optimizer framework for TDMA-based medium access control in IoT. CSI Transactions on ICT, 8(3), 319–330.

    Article  Google Scholar 

  19. Marinkovic, S. J., Popovici, E. M., Spagnol, C., Faul, S., & Marnane, W. P. (2009). Energy-efficient low duty cycle MAC protocol for wireless body area networks. IEEE Transactions on Information Technology in Biomedicine, 13(6), 915–925.

    Article  Google Scholar 

  20. Kauer, F., & Turau, V. (2018). An analytical model for wireless mesh networks with collision-free TDMA and finite queues. EURASIP journal on wireless communications and networking, 2018(1), 149.

    Article  Google Scholar 

  21. Mary, A. S., Kotteeswaran, R., & Pandeeswaran, C. (2018). Design of wireless sensor network protocol using Contiki OS. International Journal of Pure and Applied Mathematics, 118(18), 4671–4678.

    Google Scholar 

  22. Mustafa, M. M., & Parthasarathy, V. (2018). A design and implementation of polling TDMA with a comparative analysis with time division multiple access for sporting application. Wireless Networks, 1–8.

  23. Al-Janabi, T. A., & Al-Raweshidy, H. S. (2019). An energy efficient hybrid MAC protocol with dynamic sleep-based scheduling for high density IoT networks. IEEE Internet of Things Journal, 6(2), 2273–2287.

    Article  Google Scholar 

  24. Mahmud, A., Hossain, F., Choity, T. A., & Juhin, F. (2020). Simulation and comparison of RPL, 6Lowpan, and Coap protocols using Cooja simulator. In Proceedings of international joint conference on computational intelligence, pp. 317–326. Springer.

  25. Gezer, A., & Okdem, S. (2020). Improving IEEE 802.15. 4 channel access performance for IoT and WSN devices. Computers & Electrical Engineering, 87, 106745.

    Article  Google Scholar 

  26. Lim, C. (2020). Improving congestion control of TCP for constrained IoT networks. Sensors, 20(17), 4774.

    Article  Google Scholar 

  27. advanticsys:802.15.4 TelosB mote Module. [Online] Available: https://www.advanticsys.com/shop/mtmcm5000msp-p-14.html. Accessed: 2021-10-20.

  28. Dunkels, A., Eriksson, J., Finne, N., & Tsiftes, N. (2011). Powertrace: Network-level power profiling for low-power wireless networks (11th ed.). Swedish Institute of Computer Science. SICS Technical Report.

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Abdulkarem.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulkarem, M., Samsudin, K., A. Rasid, M.F. et al. Contiki IEEE 802.15.4 MAC Layer Protocols: Implementation and Evaluation of Node’s Throughput and Power Consumption. Wireless Pers Commun 124, 2367–2390 (2022). https://doi.org/10.1007/s11277-022-09468-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09468-6

Keywords

Navigation