Skip to main content

Advertisement

Log in

Compressed Image Restoration by Combining Trained Dictionary with Plug and Play Framework

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The JPEG compression is one of the traditional approach to produces compression at higher compression rates, despite the decompression still yields blocking artifacts. The proposed method aims to reduce blocking artifacts by combining the trained dictionary and Plug and Play (PnP) framework. The trained dictionary are derived from set of images, which incorporates the high frequency components. The PnP framework is based on image inverse problem, and this framework finds the optimized solution using Alternating Direction based method and leading denoisers. The main advantage of this framework is that it can incorporates any denoiser into it. In this paper, two denoisers considered for PnP framework are Recursive Filter and Total Variation. The main advantage of the proposed method is that it combines the two optimization strategies of image inverse problem. The trained dictionary finds the optimized solution based on the greedy approach and the PnP frame finds the optimized solution based on the constrained optimization. Specifically, the results are compared with leading techniques and sparsified DCT dictionary with PnP framework. The proposed method effectively restore the medical images that were compressed using JPEG format.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lee, J. S. (1983). Digital image smoothing and the sigma filter. Computer Vision and Graph in Image Processing, 24, 255–269.

    Article  Google Scholar 

  2. Banham, M. R., & Katsaggelos, A. K. (1997). Digital image restoration. IEEE Transaction on Signal Processing, 14(2), 24–41.

    Article  Google Scholar 

  3. George, A. T., Tzovaras, D., & Gerassimos, M. (2002). Blocking Artifacts detection and reduction in Compressed data. IEEE Transactions on Circuits and Systems for Video Technology, 12(10), 877–890.

    Article  Google Scholar 

  4. Hsu, Y. F., & Chen, Y. C. (1993). A new adaptive median filter for removing blocking effects. IEEE Transactions Consumer Electronics, 39(3), 510–513.

    Article  Google Scholar 

  5. Reeve, H. C., & Lim, J. S. (1984). Reduction of blocking artifacts in image coding. Optical Engineering, 23(1), 34–37.

    Google Scholar 

  6. Jarske, T., Haavisto, P., & Defee, I. (1994). Post-filtering methods for reducing blocking effects from coded images. IEEE Transactions Consumer Electronics, 40(3), 521–526.

    Article  Google Scholar 

  7. Kuo, C. J., & Hseih, R. J. (1995). Adaptive post processor for block encoded images. IEEE Transactions on Circuits and Systems for Video Technology, 5(4), 298–304.

    Article  Google Scholar 

  8. Meier,T., Ngan, K. N., &Crebbin,G. (1996). A region based algorithm for enhancement of images degraded by blocking effects. Proceedings of the IEEE TENCON Digital Signal Processing Applications, Australia. pp.405–408.

  9. Lee, Y. L., Kim, H. C., & Park, H. W. (1998). Blocking effect reduction by JPEG images by signal adaptive filtering. IEEE Transactions on Image Processing., 7(2), 229–234.

    Article  Google Scholar 

  10. Zhang, B., & Allebach, J. P. (2008). Adaptive bilateral filter for sharpness enhancement and noise removal. IEEE Transactions on Image Processing, 17(17), 664–678.

    Article  MathSciNet  Google Scholar 

  11. Vo, D. T., Nyuyen, T. Q., Yea, S., & Vetro, A. (2009). Adaptive Fuzzy Filtering for artifact reduction in compressed images and videos. IEEE Transactions on Image Processing, 18(6), 1166–1178.

    Article  MathSciNet  MATH  Google Scholar 

  12. Nath, N. K., Hazarika, D., Mahanta, A. (2010). Blocking Artifacts reduction using adaptive bilateral filtering. Proceedings of the IEEE International conference on Signal Processing and Communication. pp. 1–5.

  13. Wang, C., Zhou, J., & Liu, S. (2013). Adaptive non-local means filter for image deblocking. Signal Processing: Image Communication, 28, 522–530.

    Google Scholar 

  14. Chen, Tao, Hong Ren, Wu., & Qiu, Bin. (2001). Adaptive post filtering of transform coefficients for the reduction of blocking artifacts. IEEE Transaction on Circuits Systems and Video Technology, 11(5), 594–602.

    Article  Google Scholar 

  15. Luo, Y., & Ward, R. K. (2003). Removing the blocking artifacts of block based DCT compressed images. IEEE Transaction on Image Processing, 12(7), 838–842.

    Article  Google Scholar 

  16. Popovici, I., & Douglas, W. (2007). Locating edges and removing ringing artifacts in JPEG images by frequency-domain analysis. IEEE Transactions on Image Processing, 16(5), 1470–1474.

    Article  MathSciNet  Google Scholar 

  17. Kim, S. D., Kim, H. M., & Ra, J. B. (1999). A deblocking filter with two separate modes in block based video coding. IEEE Transactions on Circuits and Systems for Video Technology, 9(1), 156–160.

    Article  Google Scholar 

  18. Joch, L. P., Lainema, A., Bjntegaard, J., & Karczewicz, G. (2003). Adaptive deblocking filter. IEEE Transactions on Circuits and Systems for Video Technology, 13(7), 614–619.

    Article  Google Scholar 

  19. Tai, S. C., Chen, Y. Y., & Sheu, S. F. (2005). Deblocking filter for low bit rate MPEG4 video. IEEE Transactions on Circuits and Systems for Video Technology, 15(6), 731–733.

    Google Scholar 

  20. Averbuch, A. Z., Schclar, A., & Donoho, D. L. (2005). Deblocking of block- transform compressed images using weighted sums of symmetrically aligned pixels. IEEE Transactions on Image Processing, 14(2), 200–212.

    Article  MATH  Google Scholar 

  21. Lim, T., Ryu, J., & Kim, J. (2008). Adaptive deblocking method using a transform table of different dimension DCT. IEEE Transactions on Consumer Electronics, 54(4), 1–5.

    Article  Google Scholar 

  22. Palaparthi, R., & Srivastava, V. K. (2012). A simple deblocking method for the reduction of blocking artifacts. IEEE Students Conference on Electrical, Electronics and Computer Science. pp. 1–4.

  23. Kaur, A., Sidhu, J. S., & Bhullar, J. S. (2021). Adaptive deblocking technique based on separate modes for removing compression effects in JPEG coded images. International Journal of Computers and Applications, 43(6), 501–513.

    Article  Google Scholar 

  24. Minami, S., & Zakhor, A. (1995). An optimization approach for removing blocking effects in transform coding. IEEE Transactions on Circuits and Systems for Video Technology, 5(2), 74–85.

    Article  Google Scholar 

  25. Jeon, B., & Jeong, J. (1998). Blocking artifacts reduction in image compression with block boundary discontinuity criterion. IEEE Transaction on Circuits Systems and Video Technology, 8(3), 345–357.

    Article  Google Scholar 

  26. Zeng, B. (1999). Reduction of blocking effect in DCT-coded images using zero-masking techniques. Signal Processing, 79(2), 205–211.

    Article  MATH  Google Scholar 

  27. Liu, S., & Bovil, A. C. (2002). Efficient DCT-domain blind measurement and Reduction of blocking Artifacts. IEEE Transaction on Circuits Systems and Video Technology, 12(12), 1139–1149.

    Article  Google Scholar 

  28. Liew, A. W. C., & Yan, H. (2004). Blocking artifacts suppression in block-coded images using overcomplete wavelet representation. IEEE Transactions on Circuits and Systems for Video Technology, 14(4), 450–461.

    Article  Google Scholar 

  29. Zhai, G., Zhang, W., Yang, X., Lin, W., & Xu, Y. (2008). Efficient deblocking with coefficient regularization, shape-adaptive filtering and quantization constraint. IEEE Transactions on Multimedia, 10(5), 735–745.

    Article  Google Scholar 

  30. Rourke, T. P. O., & Stevenson, R. L. (1995). Improved image decompression for reduced transform coding artifacts. IEEE Transactions on Circuits and Systems for Video Technology, 5(6), 490–499.

    Article  Google Scholar 

  31. Ozcelik, T., Brailean, J. C., & Katsaggelos, A. K. (1995). Image and video compression algorithms based on recovery techniques using mean field annealing. Proceedings of the IEEE, 83(2), 304–316.

    Article  Google Scholar 

  32. Meier, T., Ngan, K. N., & Crebbin, G. (1999). Reduction of blocking artifacts in image and video coding. IEEE Transactions on Circuits and Systems for Video Technology, 9(3), 490–500.

    Article  Google Scholar 

  33. Zhang, X., Xiong, R., Fan, X., Ma, S., & Gao, W. (2013). Compression artifact reduction by overlapped-block transform coefficient estimation with block similarity. IEEE Transactions on Image Processing, 22(12), 4613–4626.

    Article  MathSciNet  MATH  Google Scholar 

  34. Unal, G. B., & Cetin, A. E. (2001). Restoration of error-diffused images using projection onto convex sets. IEEE Transactions on Image Processing, 10(12), 1836–1841.

    Article  MATH  Google Scholar 

  35. Zakhor, A. (1992). Iterative procedures for reduction of blocking effects in transform image coding. IEEE Transactions on Circuits and Systems for Video Technology, 2(1), 91–95.

    Article  Google Scholar 

  36. Yang, Y., & Galatsanos, N. P. (1997). Removal of compression artifacts using projections onto convex sets and line process modeling. IEEE Transactions on Image Processing, 6(10), 1345–1357.

    Article  Google Scholar 

  37. Kim, Y., Park, C. S., & Ko, S. J. (2003). Fast POCS based post-processing technique for HDTV. IEEE Transaction in Consumer Electronics, 49(4), 1438–1447.

    Article  Google Scholar 

  38. Zou, J. J., & Yan, H. (2005). A deblocking method for BDCT compressed images based on adaptive projections. IEEE Transaction on Circuits and System for Video Technology, 15(3), 430–435.

    Article  Google Scholar 

  39. Paek, H., & Haseyama, R. C. H. (2011). Missing intensity interpolation using a kernel PCA-based POCS algorithm and its applications. IEEE Transactions on Image Processing, 20(2), 417–432.

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, Z., Yang, J., & Zhang, D. (2015). A Survey of sparse representation: Algorithms and applications. IEEE Biometrics Compendium, 3(1), 490–530.

    Google Scholar 

  41. Michal, A., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11), 4311–4322.

    Article  MATH  Google Scholar 

  42. Choi, I., Kim, S. (2013). A learning based Approach to reduce JPEG Artifacts in Image Matting. Proceedings of the IEEE Conferences in Computer Vision, Sydney, NSW, Australia. pp. 2880–2887.

  43. Liu, X., Wu, X., Zhou, J., & Zhao, D.,(2015).Inter-block consistent soft decoding of jpeg images with sparsity and graph-signal smoothness priors. Proceedings of the IEEE International Conference on Image Processing ,Quebeu City, QC, Canada. pp. 1628–1632.

  44. Huibin, C., Michael, K., & Tieyong, Z. (2014). Reducing artifact in JPEG decompression via a learned dictionary. IEEE Transactions on Image Processing, 62(3), 718–728.

    Article  MathSciNet  MATH  Google Scholar 

  45. Liu, X., Wu, X., Zhou, J., & Zhao, D., (2013). Sparsity-based decoding of compressed images in transform domain. Proceedings of the IEEE International Conference on Image Processing, Melbourne, VIC, Australia. pp. 563–566.

  46. Liu, X., Wu, X., Zhou, J., & Zhao, D. (2016). Data-driven soft decoding of compressed images in dual transform-pixel domain. IEEE Transactions on Image Processing., 25(4), 1649–1659.

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhao, C., Zhang, J., Ma, S., Fan, X., Zhang, Y., & Gao, W. (2017). reducing image compression artifacts by structural sparse representation and quantization constraint prior. IEEE Transactions on Circuits and Systems for Video Technology, 27(10), 1–14.

    Article  Google Scholar 

  48. Patel, E., & Gangwar, M. (2017). Analysis of novel de-blocking method for blocking artifacts reduction. International Conference on Communication and Signal Processing.April 6–8, Chennai, India. pp. 1452–1456.

  49. Itier, V., Kucharczak, F., Strauss, O., & Puech, W. (2018). Interval-valued JPEG decompression for artifact suppression. Eighth International Conference on Image Processing Theory, Tools and Applications, China.

  50. Singh, A., & Singh, J. (2019). Blocking artifacts removal of DCT based highly compressed images. Second International Conference on Intelligent Computing, Instrumentation and Control Technologies, Kannur, Kerala.

  51. Chen, H., He, X., An, C., & Nguyen, T. Q. (2019). Deep wide-activated residual network based joint blocking and color bleeding artifacts reduction for 4:2:0 JPEG-compressed images. IEEE Signal Processing Letters, 26(1), 79–83.

    Article  Google Scholar 

  52. Kaushik, M. K., Chandrakala, G.C., & Raj Abhinay. (2018). Ringing and blur artifact removal in image processing applications. Second International conference on intelligent computing and control systems, Madurai, India. 260–264.

  53. Song, Q., Xiong, R., Fan, X., Liu, D., Feng, W., Huang, T., & Gao, W. (2020). Compressed image restoration via artifacts-free PCA basis learning and adaptive sparse modeling. IEEE Transactions on Image Processing, 29, 7399–7413.

    Article  MathSciNet  Google Scholar 

  54. Zhu, J., Lv, H., Li, K., & Hao, B. (2020). Constrained minimization problem for image restoration based on non-convex hybrid regularization. IEEE Access, 8, 162657–162667.

    Article  Google Scholar 

  55. Figueiredo, M., Nowak, R. D., & Wright, S. J. (2007). Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing., 1(4), 586–597.

    Article  Google Scholar 

  56. Kim, S. J., Koh, K., Lustig, M., Boyd, S., & Gorinevsky, D. (2007). An interior-point method for large- scale l1-regularized least squares. IEEE Journal of Selected Topics in Signal Processing, 1(4), 606–617.

    Article  Google Scholar 

  57. Yang, J., & Zhang, Y. (2011). Alternating direction algorithms for l1-problems in compressive sensing. IEEE Transaction in Information Theory, 33(1), 250–278.

    MATH  Google Scholar 

  58. Venkatakrishnan, S. V., Bouman, C. A., & Wohlberg, B., (2013).Plug-and-play priors for model based reconstruction. IEEE Global conference on signal and information processing. pp. 945–948.

  59. Xie, B., Lv, Z., Yang, J., Shen, J. (2021). Regularization model based on transmission constraints. IEEE International conference on consumer electronics and computer Engineering, Guangzhou, China. pp. 560–564.

  60. Zha, Z., Yuan, X., Wen, B., Zhang, J., Zhou, J., & Zhu, C. (2020). Image Restoration Using Joint Patch-Group-Based Sparse Representation. IEEE Transactions on Image Processing, 29(1), 7735–7750.

    Article  Google Scholar 

  61. Wang, Z. X., Wang, H. Q., & Ren, S. L. (2021). Research on ADMM Reconstruction algorithm of Photoacoustic tomography with limited sampling data. IEEE Access, 9, 113631–113641.

    Article  Google Scholar 

  62. Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007). Image denoising by sparse 3-D transform- domain collaborative filtering. IEEE Transactions on Image Processing, 16(8), 2080–2095.

    Article  MathSciNet  Google Scholar 

  63. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simonelli, E. P. (2004). Image quality assessment: From error measurement to structural Similarity. IEEE Transactions on Image Processing, 13(1), 600–612.

    Article  Google Scholar 

  64. Wang, Z., & Bovik, A. C. (2002). A universal image quality index. IEEE Signal Processing Letters, 9(3), 81–84.

  65. Zhang, L., Zhang, L., Mou, X., & Zhang, D. (2011). FSIM: A Feature Similarity Index for Image Quality Assessment. IEEE Transactions on Image Processing, 20(8), 2378–2386.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Sujithra.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sujithra, M.S., Sugitha, N. Compressed Image Restoration by Combining Trained Dictionary with Plug and Play Framework. Wireless Pers Commun 124, 2809–2829 (2022). https://doi.org/10.1007/s11277-022-09490-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09490-8

Keywords