Skip to main content

Advertisement

Log in

A Polarization Reconfigurable Wideband DRA Using Cross Stepped Dielectric Resonator

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A wideband dual-feed dielectric resonator antenna (DRA) is proposed by stacking five-layer cross dielectric resonators and dual-port coaxial feeds. The proposed DRA can realize reconfigurable polarization states among right-hand circular polarization, left-hand circular polarization and three linear polarizations at 0°, ± 45°. The impedance bandwidth of DRA is 93.6% from 6.05 to 13.4 GHz. The 3 dB axial ratio bandwidth for circular polarization states is 87.8% from 3.50–8.50 GHz and the overlapped of impedance bandwidth and axial bandwidth is from 6.05 to 8.50 GHz with gain no less than 5 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

The data used to support the fndings of this study are available from the corresponding author upon request.

References

  1. Dwivedi, A. K., Sharma, A., Singh, A. K. & Singh V. (2020). Circularly polarized two port MIMO cylindrical DRA for 5G applications. In: 2020 International Conference on UK-China Emerging Technologies (UCET), Glasgow, UK, pp. 1–4.

  2. Rath, S. & Sheeja, K. L., (2018). A novel approach to produce a wideband DRA applicable for unlicensed 5G wireless communication. In: 2018 International Conference on Applied Electromagnetics, Signal Processing and Communication (AESPC), Bhubaneswar, India, pp. 1–4.

  3. Wang, K. X., & Wong, H. (2017). A Reconfigurable CP/LP Antenna With Cross-Probe Feed. IEEE Antennas and Wireless Propagation Letters, 16, 669–672.

    Article  Google Scholar 

  4. Chen, Z., Wong, H., & Liu, Y. (2019). A Polarizer Integrated Dielectric Resonator Antenna for Polarization Reconfigurability. IEEE Transactions on Antennas and Propagation, 67(4), 2723–2728.

    Article  Google Scholar 

  5. Valenzuela-valdes, J. F., Garcia-fernandez, M. A., Martinezgonzalez, A. M., & Sanchez-Hernandez, D. (2006). The role of polarization diversity for MIMO systems under rayleigh-fading environments. IEEE Antennas Wireless Propag. Lett., 5(1), 534–536.

    Article  Google Scholar 

  6. Yang, W., Dong, X., Sun, W., & Chen, J. (2018). polarization reconfigurable broadband dielectric resonator antenna with a lattice structure. IEEE Access, 6, 21212–21219.

    Article  Google Scholar 

  7. Leung, K. W., Luk, K. M., Chow, K. Y., & Yung, E. K. N. (1997). Bandwidth enhancement of dielectric resonator antenna by loading a low-profile dielectric disk of very high permittivity. Electronics Letters, 33(9), 725–726.

    Article  Google Scholar 

  8. Gao, Y., Feng, Z., & Zhang, L. (2012). Compact asymmetrical t-shaped dielectric resonator antenna for broadband applications. IEEE Transactions on Antennas and Propagation, 60(3), 1611–1615.

    Article  Google Scholar 

  9. Sankaranarayanan, D., Venkatakrian, D., & Mukherjee, B. (2016). Koch snowflake dielectric resonator antenna with periodic circular slots for high gain and wideband applications. In: Proceedings of the IEEE Radio, Aug. 2016, pp. 1418–1421.

  10. Aboufoul, T., Alomainy A., & Parini, C. (2013). Polarisation reconfigurable ultra wideband antenna for cognitive radio devices. In: 2013 IEEE antennas and propagation society international symposium (APSURSI), Orlando, FL, pp. 1636-1637.

  11. Mak, K. M., Lai, H. W., Luk, K. M., & Ho, K. L. (2017). Polarization reconfigurable circular patch antenna with a C-shaped. IEEE Transactions on Antennas and Propagation, 65, 1388–1392.

    Article  MathSciNet  Google Scholar 

  12. Nguyen-Trong, N., Mobashsher A. T., & Abbosh, A. M. (2018). Reconfigurable shorted patch antenna with polarization and patterndiversity, IEEE, pp. 27−28

  13. Qin, P. Y., Guo, Y. J., Cai, Y., Dutkiewicz, E., & Liang, C. H. (2011). A reconfigurable antenna with frequency and polarization agility. IEEE Antennas and Wireless Propagation Letters, 10, 1373–1376.

  14. Khidre, A., Lee, K., Yang, F., & Elsherbeni, A. Z. (2013). Circular polarization reconfigurable wideband E-shaped patch antenna for wireless applications. IEEE Transactions on Antennas and Propagation, 61, 960–964.

    Article  Google Scholar 

  15. Chen, S., Qin P., & Guo, Y. J. (2017). Multi-linear polarization reconfigurable center-fed circular patch antenna with shorting posts. IEEE, pp. 2209−2210.

  16. Lin, W., & Wong, H. (2017). ‘Wideband circular-polarization reconfigurable antenna with L-shaped feeding probes.’ IEEE Antennas Wireless Propag. Lett., 16, 2114–2117.

    Article  Google Scholar 

  17. Row, J.-S., & Hou, M.-J. (2014). Design of polarization diversity patch antenna based on a compact reconfigurable feeding network. IEEE Transactions on Antennas and Propagation, 62(10), 5349–5352.

    Article  Google Scholar 

  18. Ji, L.-Y., Qin, P.-Y., Guo, Y. J., Ding, C., Fu, G., & Gong, S.-X. (2016). A wideband polarization reconfigurable antenna with partially reflective surface. IEEE Trans. Antenna Propag., 64(10), 4534–4538.

    Article  MathSciNet  Google Scholar 

  19. Yang, W., Che, W., Jin, H., Feng, W., & Xue, Q. (2015). A polarization reconfigurable dipole antenna using polarization rotation AMC structure. IEEE Transactions on Antenna Propag., 63(12), 5305–5315.

    Article  MathSciNet  Google Scholar 

  20. Hu, J., Luo, G. Q., & Hao, Z.-C. (2017). A wideband quad-polarization reconfigurable metasurface antenna. IEEE Access, 6, 6130–6137. https://doi.org/10.1109/ACCESS.2017.2766231

    Article  Google Scholar 

  21. Wu, F., & Luk, K. M. (2017). Single-port reconfigurable magneto-electric dipole antenna with quad-polarization diversity. IEEE Transactions on Antennas and Propagation, 65(5), 2289–2296.

    Article  Google Scholar 

  22. Hao, Z.-C., Fan, K.-K., & Wang, H. (2017). A planar polarization-reconfigurable antenna. IEEE Transactions on Antennas and Propagation, 65(4), 1624–1632.

    Article  MathSciNet  Google Scholar 

  23. Hu, J., Hao, Z.-C., & Hong, W. (2017). Design of a wideband quad-polarization reconfigurable patch antenna array using a stacked structure. IEEE Trans. Antenna Propag., 65(6), 3014–3023.

    Article  MathSciNet  Google Scholar 

  24. Lin, W., & Wong, H. (2016). Polarization reconfigurable aperture-fed patch antenna and array. IEEE Access, 4, 1510–1517.

    Article  Google Scholar 

  25. Huang J., & Gong, X. (2018). A wide-band dual-polarized frequency-reconfigurable slot-ring antenna element using a diagonal feeding method for array design.In: 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, pp. 477-478.

  26. Tian, S., Zhao, Y., & Li, L. (2018). A novel dual-band and dual-polarized reconfigurable reflectarray antenna element. Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), Xuzhou, 2018, 1–2.

    Google Scholar 

  27. Patriotis, M., Ayoub, F. N., Christodoulou C. G., & Jayaweera, S. (2019). A K/Ka band frequency reconfigurable transmit/receive antenna array. In: 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, pp. 1–4.

Download references

Funding

This work was supported by Project of Public Welfare Industry of Ministry of Science and Technology of China under Grant No.GYHY201206038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiawen Zhang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this manuscript. The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Zhang, J. A Polarization Reconfigurable Wideband DRA Using Cross Stepped Dielectric Resonator. Wireless Pers Commun 124, 3145–3158 (2022). https://doi.org/10.1007/s11277-022-09506-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09506-3

Keywords