Skip to main content
Log in

A Collision-Free Scheduling Algorithm with Minimum Data Redundancy Transmission for TSCH

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The IEEE 802.15.4e specified the Time Slotted Channel Hopping (TSCH) that uses multi-channels and shared links to ensure a reliable and efficient data transmission in IoT applications. However, the standard does not define any scheduling mechanism for the network configuration. The main problem in TSCH is triggered when hidden nodes in a shared link transmit data at the same time. A collision happens even if the hidden nodes apply CSMA/CA before starting data transmission. To solve this problem, we propose Interference Collision Free Scheduling (ICFS), and Interference Collision Free Scheduling-Without Redundant Data (ICFS-WRD) algorithms to reduce the internal collisions caused by hidden nodes on shared links. The ICFS-WRD approach stands in contrast to proposals in the recent literature where shared links of the proposed TSCH schedules are free from colliding nodes. ICFS-WRD intentionally schedules the colliding nodes that sense redundant data on the same shared link, and let them alternate in transmitting data. This mechanism is targeted to sparse more cells for future flows, reduce the slot-frame size, increase the network’s lifetime and avoid transmitting redundant data. We propose a clustering technique to build a multi-hop cluster based convergecast traffic routing approach with a unique sink, on which we implement the scheduling algorithms. The proposed algorithms have been tested through simulations using network simulator NS3. The results show improvements in terms of energy consumption (ICFS saves approximately 23%), packets delivery ratio (ICFS achieves approximately 96.5%), and latency (ICFS-WRD delivers the packets twice faster than ICFS). We discuss some theorems and proofs that show that ICFS-WRD reduces the slot-frame size, increases the network lifetime, avoids transmitting redundant data, and minimizes the network’s congestion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Data availability: The necessary data to implement TSCH are extracted from IEEE 802.15.4e standard.

Code availability

Code on request from the corresponding author.

References

  1. Procopiou, A., Komninos, N., & Douligeris, C. (2019). Forchaos: Real time application ddos detection using forecasting and chaos theory in smart home iot network. Wireless Communications and Mobile Computing, 2019.

  2. Jansson, J., & Hakala, I. (2020). Managing sensor data streams in a smart home application. International Journal of Sensor Networks, 32(4), 247–258.

    Article  Google Scholar 

  3. Jovanov, E. (2019). Wearables meet iot: Synergistic personal area networks (spans). Sensors, 19(19), 4295.

    Article  Google Scholar 

  4. Gasco-Hernandez, M., Rodríguez Bolívar, Manuel P., & Nam, T. (2019). Introduction to the minitrack on smart and connected cities and communities. In Proceedings of the 52nd Hawaii International Conference on System Sciences.

  5. Ning, Z., Huang, J., & Wang, X. (2019). Vehicular fog computing: Enabling real-time traffic management for smart cities. IEEE Wireless Communications, 26(1), 87–93.

    Article  Google Scholar 

  6. Hossain, M. S., Muhammad, G., & Alamri, A. (2019). Smart healthcare monitoring: A voice pathology detection paradigm for smart cities. Multimedia Systems, 25(5), 565–575.

    Article  Google Scholar 

  7. Hodgson, N., Laha, M., Lee, TS., Haloui, H., Heming, S., & Steinkopff, A. (2019). Industrial ultrafast lasers–systems, processing fundamentals, and applications. In CLEO: Science and Innovations, pages JM3E–1. Optical Society of America.

  8. Kaiwartya, O., Abdullah, A. H., Cao, Y., Altameem, A., Prasad, M., Lin, C.-T., & Liu, X. (2016). Internet of vehicles: Motivation, layered architecture, network model, challenges, and future aspects. IEEE Access, 4(5356–5373), 2016.

    Google Scholar 

  9. Nijhawan, M., Singal, P., & Jindal, H. (2019). Handwriting detection using neural network.

  10. Jindal, H., Saxena, S., & Kasana, S. S. (2018). A sustainable multi-parametric sensors network topology for river water quality monitoring. Wireless Networks, 24(8), 3241–3265.

    Article  Google Scholar 

  11. Jindal, H., Singh, H., Bharti, M. (2018). Modified cuckoo search for resource allocation on social internet-of-things. In 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC), pp 465–470. IEEE.

  12. Kaur, S., & Jindal, H. (2017). Enhanced image watermarking technique using wavelets and interpolation. International Journal of Image, Graphics and Signal Processing, 9(7), 23.

    Article  Google Scholar 

  13. Spachos, P., Papapanagiotou, I., & Plataniotis, K. N. (2018). Microlocation for smart buildings in the era of the internet of things: A survey of technologies, techniques, and approaches. IEEE Signal Processing Magazine, 35(5), 140–152.

    Article  Google Scholar 

  14. Hammoudi, S., Aliouat, Z., & Harous, S. (2018). Challenges and research directions for internet of things. Telecommunication Systems, 67(2), 367–385.

    Article  Google Scholar 

  15. Hammoudi, S., Harous, S., Aliouat, Z., & Louail, L. (2018). Time slotted channel hopping with collision avoidance. International Journal of Ad Hoc and Ubiquitous Computing, 29(1–2), 85–102.

    Article  Google Scholar 

  16. Le, H-C., Guyennet, H., & Felea, V. (2007). Obmac: an overhearing based mac protocol for wireless sensor networks. In 2007 International Conference on Sensor Technologies and Applications (SENSORCOMM 2007), pp 547–553. IEEE.

  17. Younis, O., Krunz, M., & Ramasubramanian, S. (2006). Node clustering in wireless sensor networks: Recent developments and deployment challenges. IEEE Network, 20(3), 20–25.

    Article  Google Scholar 

  18. IEC. Industrial communication networks wireless communication network and communication profiles wirelesshart. 2010.

  19. ANSI/ISA. Ansi/isa-100.11a-2011 wireless systems for industrial automation: Process control and related applications. 2011.

  20. Ieee standard for low-rate wireless networks. IEEE Std 802.15.4 TM-2015, 2015.

  21. Hammoudi, S., Aliouat, Z., & Harous, S. (2021). Enhanced time-slotted channel hopping. Transactions on Emerging Telecommunications Technologies, 35, e3638.

    Google Scholar 

  22. Hammoudi, S., Harous, S., & Aliouat, Z. (2018). External interference free channel access strategy dedicated to tsch. In 2018 IEEE International Conference on Electro/Information Technology (EIT), pp 0350–0355. IEEE.

  23. Nikoukar, A., Raza, S., Poole, A., Güneş, M., & Dezfouli, B. (2018). Low-power wireless for the internet of things: Standards and applications. IEEE Access, 6, 67893–67926.

    Article  Google Scholar 

  24. De Guglielmo, D., Brienza, S., & Anastasi, G. (2016). Ieee 802.15. 4e: A survey. Computer Communications, 88, 1–24.

    Article  Google Scholar 

  25. Watteyne, T., Palattella, M-R., & Grieco, LA. (2015). Using ieee 802.15. 4e time-slotted channel hopping (tsch) in the internet of things (iot): Problem statement.

  26. Rezaee, A,C., Vincent WS. (2019). Diversity routing to improve delay-jitter tradeoff in uncertain network environments. In ICC 2019-2019 IEEE International Conference on Communications (ICC), pp 1–7. IEEE.

  27. Papadopoulos, Georgios Z., Matsui, T., Thubert, P., Texier, G., Watteyne, T., & Montavont, N. (2017). Leapfrog collaboration: Toward determinism and predictability in industrial-iot applications. In 2017 IEEE International Conference on Communications (ICC), pp 1–6. IEEE.

  28. Demir, A. K., & Bilgili, S. (2019). Diva: a distributed divergecast scheduling algorithm for ieee 802.15. 4e tsch networks. Wireless Networks, 25(2), 625–635.

    Google Scholar 

  29. Meng, M., Yujun, Z., Dadong, Z., & Fan, C. (2018). Scheduling for data transmission in multi-hop ieee 80215.4.e tsch networks. Mobile Networks and Applications, 23(1), 119–125.

    Article  Google Scholar 

  30. Phung, K.-H., Lemmens, B., Goossens, M., Nowe, A., Tran, L., & Steenhaut, K. (2015). Schedule-based multi-channel communication in wireless sensor networks: A complete design and performance evaluation. Ad Hoc Networks, 26, 88–102.

    Article  Google Scholar 

  31. Dujovne, D., Grieco, LA., Palattella, MR., & Accettura, N. (2017). 6tisch 6top scheduling function zero (sf0). Internet Engineering Task Force.

  32. Hamza, T., & Kaddoum, G. (2019). Enhanced minimal scheduling function for ieee 802.15. 4e tsch networks. In 2019 IEEE Wireless Communications and Networking Conference (WCNC), pp 1–6. IEEE.

  33. Duquennoy, S., Al Nahas, B., Landsiedel, O., & Watteyne, T. (2015). Orchestra: Robust mesh networks through autonomously scheduled tsch. In Proceedings of the 13th ACM conference on embedded networked sensor systems, pp 337–350.

  34. Kim, S., Kim, H-S., & Kim, C. (2019). Alice: autonomous link-based cell scheduling for tsch. In Proceedings of the 18th International Conference on Information Processing in Sensor Networks, pp 121–132.

  35. Karalis, A., Zorbas, D., & Douligeris, C. (2019). Collision-free advertisement scheduling for ieee 802.15. 4-tsch networks. Sensors, 19(8), 1789.

    Article  Google Scholar 

  36. Karalis, A. (2018). Atp: A fast joining technique for ieee802. 15. 4-tsch networks. In 2018 IEEE 19th International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), pp 588–599. IEEE.

  37. Fahs, AJ., Bertolini, R., Alphand, O., Rousseau, F., Altisen, K., & Devismes, S. (2017). Collision prevention in distributed 6tisch networks. In 2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp 1–6. IEEE.

  38. Palattella, MR., Accettura, N., Dohler, M., Grieco, LA., & Boggia, G. (2012). Traffic aware scheduling algorithm for reliable low-power multi-hop ieee 802.15. 4e networks. In 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications-(PIMRC), pp 327–332. IEEE.

  39. Jeong, S., Kim, H-S., Paek, J., & Bahk, S. (2020). Ost: On-demand tsch scheduling with traffic-awareness. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications, pp 69–78. IEEE.

  40. Tavallaie, O., Taheri, J., & Zomaya, Albert Y. (2021). Design and optimization of traffic-aware tsch scheduling for mobile 6tisch networks. In Proceedings of the International Conference on Internet-of-Things Design and Implementation, pp 234–246.

  41. Accettura, N., Vogli, E., Palattella, M. R., Grieco, L. A., Boggia, G., & Dohler, M. (2015). Decentralized traffic aware scheduling in 6tisch networks: Design and experimental evaluation. IEEE Internet of Things Journal, 2(6), 455–470.

    Article  Google Scholar 

  42. Network simulator, https://www.nsnam.org, 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saad Harous.

Ethics declarations

Conflict of interest

This research work is supported in part by PHC-Tassili Grant Number 18MDU114. The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammoudi, S., Ourzeddine, H., Gueroui, M. et al. A Collision-Free Scheduling Algorithm with Minimum Data Redundancy Transmission for TSCH. Wireless Pers Commun 124, 3159–3188 (2022). https://doi.org/10.1007/s11277-022-09507-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09507-2

Keywords