Skip to main content

Advertisement

Log in

Clustering Base Energy Efficient Mechanism for an Underwater Wireless Sensor Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Underwater sensor networks are significantly different from terrestrial networks due to certain characteristics of low bandwidth, high proliferation delay, absorption, attenuation and limited energy. These unique features cause challenges in the development of protocols for underwater sensor networks (UWSNs) by researchers. In any case, energy conservation is one of the characteristics that ought to be considered. In this paper, considering the underwater (UW) constraint, we propose an energy conservation methodology that benefits from the use of the LEACH calculation method for UWSNs. The simulation results of our proposed hierarchical clustering strategy for UW networks are compared with the hierarchical clustering strategy of LEACH of terrestrial networks and show that the proposed methodology for UWSNs matches that of LEACH for terrestrial WSNs. Similar to the LEACH protocol, the proposed methodology also reduces the total energy consumption and prolongs the life of the UWSN. In a certain round, the number of nodes that are alive and the life of the network remain the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yu, X., & Yu, X. (2002). Wireline quality underwater wireless communication using high speed acoustic modems. San Diego, CA, USA. In OCEANS 2000 MTS/IEEE conference and exhibition. Conference proceedings. https://doi.org/10.1109/OCEANS.2000.881294

  2. Heidemann, J., Stojanovic, M., & Zorzi, M. (2012). Underwater sensor networks: Applications, advances and challenges. Philosophical Transactions of the Royal Society of London, 370(958), 158–175. https://doi.org/10.1098/rsta.2011.0214

    Article  Google Scholar 

  3. Peach, C., & Yarali, A. (2013). An overview of underwater sensor networks. In CWMC the ninth international conference on wireless and mobile communications (pp 31–36).

  4. Ihsan, A., Saghar, K., Fatima, T., & Hasan, O. (2019). Formal comparison of LEACH and its extensions. Computer Standards and Interfaces, 62, 119–127.

    Article  Google Scholar 

  5. Enam, R. N., Misbahuddin, S., & Imam, M. (2012). Eergy efficient round rotation method for a random cluster based WSN. In International conference on collaboration technologies and systems (CTS) (pp. 157–163).

  6. Sehgal, A. (2009). Analysis and simulation of the deep sea acoustic channel for sensor networks. A thesis for the conferral of a Master of Science in Smart Systems. http://www.jacobs-university.de/

  7. Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: research challenges. Ad hoc Networks Journal, 3(3), 257–279.

    Article  Google Scholar 

  8. Kao, C.-C., Lin, Y.-S., Wu, G.-D., & Huang, C.-J. (2017). A comprehensive study on the internet of underwater things: Applications, challenges, and channel models. Sensors. https://doi.org/10.3390/s17071477

    Article  Google Scholar 

  9. Sozer, E., Stojanovic, M., & Proakis, J. (2000). Underwater acoustic networks. IEEE Journal of Oceanic Engineering, 25(1), 72–83.

    Article  Google Scholar 

  10. Cai, M., & Bingham, B. (2011). Passive acoustic detection of a small remotely operated vehicle. In OCEANS IEEE—Spain (pp. 1–7). https://doi.org/10.1109/Oceans-Spain.2011.6003555

  11. Mohsin, M., Adil, S. A., Asif, M. M., Emad, F., & Saad, Q. (2015). A survey on current underwater acoustic sensor network applications. International Journal of Computer Theory and Engineering, 7(1), 51–56.

    Google Scholar 

  12. Pompili, D., & Akyildiz, I. F. (2010). A multimedia cross-layer protocol for underwater acoustic sensor networks. IEEE Transactions on Wireless Communications, 9(9), 2924–2933.

    Article  Google Scholar 

  13. Yahya, A., Islam, S., Akhunzada, A., & Ahmed, G. (2018). Towards efficient Sink mobility in underwater wireless sensor networks. MDI Energies, 11, 1471. https://doi.org/10.3390/en11061471

    Article  Google Scholar 

  14. Nadeem, J., Naveed, I., Ashfaq, A., et al. (2015). An efficient data gathering routing protocol for underwater wireless sensor networks. Sensors, 15, 29149–29181. https://doi.org/10.3390/s151129149

    Article  Google Scholar 

  15. Jing, L., He, C., & Huang, J. (2017). Energy management and power allocation for underwater acoustic sensor network. IEEE Sensors Journal, 17(19), 6451–6462. https://doi.org/10.1109/JSEN.2017.2737229

    Article  Google Scholar 

  16. Khan, A., Khan, M., Ahmed, S., Amiruddin, M., & Khan, M. (2019). Energy harvesting based routing protocol for underwater sensor networks. PLoS ONE. https://doi.org/10.1371/journal.pone.0219459

    Article  Google Scholar 

  17. Zhou, Y., Cao, T., Xiang, W. (2002) Any path routing protocol design via Q-Learning for underwater sensor networks. IEEE Internet of Things Journal. arXiv:09623v1

  18. Khalid, M., Ahmad, F., Arshad, M., Khalid, W., Ahmad, N., & Cao, Y. (2019). E2MR: energy efficient multipath routing protocol for underwater wireless sensor networks. In IET research (pp. 321–328). https://doi.org/10.1049/iet-net.2018.5203

  19. Rani, S., Ahmed, S. H., & Malhotra, R. T. (2017). Energy efficient chain based routing protocol for underwater wireless sensor networks. Journal of Network and Computer Applications. https://doi.org/10.1016/j.jnca.2017.01.011

    Article  Google Scholar 

  20. Tan, D. D., & Kim, D.-S. (2015). Cooperative transmission scheme for multi hop underwater acoustic sensor networks. International Journal of Communication Networks and Distributed Systems, 14(1), 1–18. https://doi.org/10.1504/IJCNDS.2015.065998

    Article  Google Scholar 

  21. Xu, M., & Liu, L. (2016). Sender-receiver role-based energy-aware scheduling for internet of underwater things. IEEE Transactions on Emerging Topics in Computing. https://doi.org/10.1109/TETC.2016.2632749

    Article  Google Scholar 

  22. Javaid, N., Shah, M., Ahmad, A., Imran, M., Khan, M. I., & Vasilakos, A. V. (2016). An enhanced energy balanced data transmission protocol for underwater acoustic sensor networks. Sensors, 16, 487. https://doi.org/10.3390/s16040487

    Article  Google Scholar 

  23. Wan, Z., Liu, S., Weichuan, W., & Xu, Z. (2018). An energy-efficient multi-level adaptive clustering routing algorithm for underwater wireless sensor networks. Berlin: Springer.

    Google Scholar 

  24. Zhu, F., & Wei, J. (2018). An energy efficient routing protocol based on layers and unequal clusters in underwater wireless sensor networks. Hindawi Journal of Sensors. https://doi.org/10.1155/2018/5835730

    Article  Google Scholar 

  25. Anuradha, D., & Srivatsa, S. K. (2019). Energy effectual reconfigurable routing protocol (E2R2P) for cluster based underwater wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-019-01413-z

    Article  Google Scholar 

  26. Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy efficient communication protocol for wireless micro sensor networks. In Proceedings of the IEEE Hawaii international conference on system sciences.

  27. Bhattacharjya, K., Alam, S., & De, D. (2019). CUWSN: Energy efficient routing protocol selection for cluster based underwater wireless sensor network (pp. 1–17). Berlin: Springer. https://doi.org/10.1007/s00542-019-04583-0

    Book  Google Scholar 

  28. Liu, G., & Wei, C. (2011). A new multi-path routing protocol based on cluster for underwater acoustic sensor networks. In 2011 International conference on multimedia technology (pp. 91–94). https://doi.org/10.1109/ICMT.2011.6003067

  29. Li, X., Fang, S.-l., & Zhang, Y.-c. (2007). The study on clustering algorithm of the underwater acoustic sensor networks. In 14th international conference on mechatronics and machine vision in practice (pp. 78–81). https://doi.org/10.1109/MMVIP.2007.4430719

  30. Mansouri, D., & Ioualalen, M. (2016). Adapting LEACH algorithm for underwater wireless sensor networks. In ICCGI: The eleventh international multi-conference on computing in the global information technology. ISBN 978-1-61208-513-5

  31. Alhazmi, A. S., Moustafa, A. I., & AlDosari, F. M. (2018). Energy aware approach for underwater wireless sensor networks scheduling: UMOD_LEACH. In 2018 21st Saudi computer society national computer conference (NCC) (pp. 1–5). https://doi.org/10.1109/NCG.2018.8593112, 2018

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HHR, Dr. RNE, Data curation: Dr. RNE, Formal analysis: HHR, Investigation: HHR, Methodology: HHR, Dr. RNE, Project administration: HHR, Dr. SAK, Resources: Dr. SAK, HHR, Software: HHR, Supervision: Dr. SAK, Dr. RNE, Validation: HHR, Dr. SAK, Visualization: HHR, Dr. RNE, Writing—original draft: HHR, Writing—review and editing: HHR.

Corresponding author

Correspondence to Huma Hasan Rizvi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizvi, H.H., Khan, S.A. & Enam, R.N. Clustering Base Energy Efficient Mechanism for an Underwater Wireless Sensor Network. Wireless Pers Commun 124, 3725–3741 (2022). https://doi.org/10.1007/s11277-022-09536-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09536-x

Keywords