Skip to main content
Log in

Improved RSS Based Distance Estimation for Autonomous Vehicles

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Autonomous vehicles are going to be used in warehouses or logistic centers more frequently in near future. The location information is vital for autonomous vehicles to accomplish tasks that are assigned to them. This study presents a wireless sensor network to be used in location estimation of autonomous vehicles. The autonomous vehicles estimate their distance to a specific node called as reference anchor node. The aim of the proposed method is to be able get more accurate distance estimations by received signal strength for autonomous vehicles. The proposed wireless sensor network provides sufficient information to the autonomous vehicles to reduce their received signal strength based estimation error. An adaptive filter based algorithm to reduce estimation error is proposed. The performance of the proposed method is validated by simulations and experiments. According to results of the simulations where ideal conditions are provided, maximum error of the proposed method is 0.81m. According to results of the experiments, the average absolute error of the proposed method can be as low as 1.272m. When the proposed method is compared with k-nearest neighbor distance estimation and conventional approach, it has a significantly lower error than them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Durrant-Whyte, H., Pagac, D., Rogers, B., et al. (2007). An autonomous straddle carrier for movement of shipping containers. IEEE Robotics and Automation Magazine, 14(3), 14–24.

    Article  Google Scholar 

  2. Borenstein, J., Everett, H. R., Feng, L., & Wehe, D. (1997). Mobile robot positioning: Sensors and techniques. Journal of Robotic Systems, 14(4), 231–249.

    Article  Google Scholar 

  3. Milanés, V., Naranjo, J. E., González, C., Alonso, J., & de Pedro, T. (2008). Autonomous vehicle based in cooperative GPS and inertial systems. Robotica, 26(5), 627–633.

    Article  Google Scholar 

  4. Jung, C. R., & Kelber, C. R. (2005). Lane following and lane departure using a linear-parabolic model. Image and Vision Computing, 23(13), 1192–1202.

    Article  Google Scholar 

  5. Wang, Y., Teoh, E. K., & Shen, D. (2004). Lane detection and tracking using B-Snake. Image and Vision Computing, 22(4), 269–280.

    Article  Google Scholar 

  6. Gao, Y., Liu, S., Atia, M., & Noureldin, A. (2015). INS/GPS/LiDAR integrated navigation system for urban and indoor environments using hybrid scan matching algorithm. Sensors, 15(9), 23286–23302.

    Article  Google Scholar 

  7. Aldibaja, M., Suganuma, N., & Yoneda, K. (2017). Robust intensity-based localization method for autonomous driving on snow-wet road surface. IEEE Transactions on Industrial Informatics, 13(5), 2369–2378.

    Article  Google Scholar 

  8. Meng, X., Wang, H., & Liu, B. (2017). A robust vehicle localization approach based on gnss/imu/dmi/lidar sensor fusion for autonomous vehicles. Sensors, 17(9), 2140.

    Article  Google Scholar 

  9. Bresson, G., Alsayed, Z., Yu, L., & Glaser, S. (2017). Simultaneous localization and mapping: A survey of current trends in autonomous driving. IEEE Transactions on Intelligent Vehicles, 2(3), 194–220.

    Article  Google Scholar 

  10. Hata, A. Y., & Wolf, D. F. (2015). Feature detection for vehicle localization in urban environments using a multilayer LIDAR. IEEE Transactions on Intelligent Transportation Systems, 17(2), 420–429.

    Article  Google Scholar 

  11. Maneerat, K., & Kaemarungsi, K. (2019). RoC: Robust and low-complexity wireless indoor positioning systems for multifloor buildings using location fingerprinting techniques. Mobile Information Systems, 2019, 5089626. https://doi.org/10.1155/2019/5089626.

  12. Halder, S., & Ghosal, A. (2016). A survey on mobility-assisted localization techniques in wireless sensor networks. Journal of Network and Computer Applications, 60, 82–94.

    Article  Google Scholar 

  13. Alomari, A., Comeau, F., Phillips, W., & Aslam, N. (2018). New path planning model for mobile anchor-assisted localization in wireless sensor networks. Wireless Networks, 24(7), 2589–2607.

    Article  Google Scholar 

  14. Phoemphon, S., So-In, C., & Niyato, D. T. (2018). A hybrid model using fuzzy logic and an extreme learning machine with vector particle swarm optimization for wireless sensor network localization. Applied Soft Computing, 65, 101–120.

    Article  Google Scholar 

  15. Yang, J., Cai, Y., Tang, D., & Liu, Z. (2019). A novel centralized range-free static node localization algorithm with memetic algorithm and Lévy flight. Sensors, 19(14), 3242.

    Article  Google Scholar 

  16. Phoemphon, S., So-In, C., & Leelathakul, N. (2020). A hybrid localization model using node segmentation and improved particle swarm optimization with obstacle-awareness for wireless sensor networks. Expert Systems with Applications, 143, 113044.

    Article  Google Scholar 

  17. Bekcibasi, U., & Tenruh, M. (2014). Increasing RSSI localization accuracy with distance reference anchor in wireless sensor networks. Acta Polytechnica Hungarica, 11(8), 103–120.

    Google Scholar 

  18. Blumenthal, J., Grossmann, R., Golatowski, F., & Timmermann, D. (2007). Weighted centroid localization in zigbee-based sensor networks. In IEEE international symposium on intelligent signal processing.

  19. Goldoni, E., Savioli, A., Risi, M., & Gamba, P. (2010). Experimental analysis of RSSI-based indoor localization with IEEE 802.15. 4. In European Wireless Conference (EW).

  20. Kumar, P., Reddy, L., & Varma, S. (2009). Distance measurement and error estimation scheme for RSSI based localization in Wireless Sensor Networks. In IEEE Fifth international conference on wireless communication and sensor networks (WCSN).

  21. Adewumi, O. G., Djouani, K., & Kurien, A. M. (2013). RSSI based indoor and outdoor distance estimation for localization in WSN. In IEEE international conference on Industrial technology (ICIT).

  22. Mao, G., Fidan, B., & Anderson, B. D. (2007). Wireless sensor network localization techniques. Computer Networks, 51(10), 2529–2553.

    Article  Google Scholar 

  23. Patwari, N., Ash, J. N., Kyperountas, S., Hero, A. O., Moses, R. L., & Correal, N. S. (2005). Locating the nodes: Cooperative localization in wireless sensor networks. IEEE Signal Processing Magazine, 22(4), 54–69.

    Article  Google Scholar 

  24. Bachrach, J. & Taylor, C. (2005). Handbook of sensor networks: Algorithms and architectures. In I. Stojmenovic (Ed.), New Jersey: Wiley. (Chapter 9).

  25. Benkic, K., Malajner, M., Planinsic, P., & Cucej, Z. (2008). Using RSSI value for distance estimation in wireless sensor networks based on ZigBee. In 15th International Conference on Systems, Signals and Image Processing.

  26. URL1, Texas Intruments, Texas, US. CC2538 (datasheet). 33 pages. [Online] Cited 2018-01-20. Available at: http://www.ti.com/lit/ds/symlink/cc2538.pdf

  27. Willis, S. L., & Kikkert, C. J. (2005). Radio propagation model for long-range ad hoc wireless sensor network. In International conference on wireless networks, communications and mobile computing.

  28. Neskovic, A., Neskovic, N., & Paunovic, G. (2000). Modern approaches in modeling of mobile radio systems propagation environment. IEEE Communications Surveys & Tutorials, 3(3), 2–12.

    Article  Google Scholar 

  29. Molisch, A. F., Balakrishnan, K., Cassioli, D., Chong, C. C., Emami, S., Fort, A., ... & Siwiak, K. (2004). IEEE 802.15. 4a channel model-final report. IEEE P802, 15(4), 662.

  30. Seidel, S. Y., & Rappaport, T. S. (1992). 914 MHz path loss prediction models for indoor wireless communications in multifloored buildings. IEEE Transactions on Antennas and Propagation, 40(2), 207–217.

    Article  Google Scholar 

  31. Patwari, N., Hero, A. O., Perkins, M., Correal, N. S., & O’dea, R. J. (2003). Relative location estimation in wireless sensor networks. IEEE Transactions on Signal Processing, 51(8), 2137–2148.

    Article  Google Scholar 

  32. Xu, J., Liu, W., Lang, F., Zhang, Y., & Wang, C. (2010). Distance measurement model based on RSSI in WSN. Wireless Sensor Network, 2(8), 606.

    Article  Google Scholar 

  33. Sari, R., & Zayyani, H. (2018). RSS localization using unknown statistical path loss exponent model. IEEE Communications Letters, 22(9), 1830–1833.

    Article  Google Scholar 

  34. Cama-Pinto, A., Pineres-Espitia, G., Caicedo-Ortiz, J., Ramírez-Cerpa, E., Betancur-Agudelo, L., & Gómez-Mula, F. (2017). Received strength signal intensity performance analysis in wireless sensor network using Arduino platform and XBee wireless modules. International Journal of Distributed Sensor Networks, 13(7), 1550147717722691.

    Article  Google Scholar 

  35. Boban, M., Vinhoza, T. T., Ferreira, M., Barros, J., & Tonguz, O. K. (2010). Impact of vehicles as obstacles in vehicular ad hoc networks. IEEE Journal on Selected Areas in Communications, 29(1), 15–28.

    Article  Google Scholar 

  36. Akhtar, N., Ergen, S. C., & Ozkasap, O. (2014). Vehicle mobility and communication channel models for realistic and efficient highway VANET simulation. IEEE Transactions on Vehicular Technology, 64(1), 248–262.

    Article  Google Scholar 

  37. Dang, X., Hei, Y., & Hao, Z. (2016). An improved indoor localization based on RSSI and feedback correction of anchor node for WSN. In International conference on computer, information and telecommunication systems (CITS).

  38. Singh, A. P., Singh, D. P., & Kumar, S. (2015). NRSSI: new proposed RSSI method for the distance measurement in WSNs. In 1st International conference on next generation computing technologies (NGCT).

  39. Oguejiofor, O., Okorogu, V., Adewale, A., & Osuesu, B. (2013). Outdoor localization system using RSSI measurement of wireless sensor network. International Journal of Innovative Technology and Exploring Engineering, 2(2), 1–6.

    Google Scholar 

  40. Xiao, Z., Wen, H., Markham, A., Trigoni, N., Blunsom, P., & Frolik, J. (2015). Non-line-of-sight identification and mitigation using received signal strength. IEEE Transactions on Wireless Communications, 14(3), 1689–1702.

    Article  Google Scholar 

  41. He, S., & Chan, S. H. G. (2016). Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons. IEEE Communications Surveys & Tutorials, 18(1), 466–490.

    Article  Google Scholar 

  42. Li, D., Zhang, B., & Li, C. (2016). A feature-scaling-based k-nearest neighbor algorithm for indoor positioning systems. IEEE Internet of Things Journal, 3(4), 590–597.

    Article  Google Scholar 

  43. Luo, R. C., & Hsiao, T. J. (2019). Dynamic wireless indoor localization incorporating with an autonomous mobile robot based on an adaptive signal model fingerprinting approach. IEEE Transactions on Industrial Electronics, 66(3), 1940–1951.

    Article  Google Scholar 

  44. Closas, P., Fernandez-Prades, C., & Fernandez-Rubio, J. A. (2009). Cramér-Rao bound analysis of positioning approaches in GNSS receivers. IEEE Transactions on Signal Processing, 57(10), 3775–3786.

    Article  MathSciNet  Google Scholar 

  45. Zhao, Y., Yang, Y., & Kyas, M. (2014). Cramér-rao lower bound analysis for wireless localization systems using priori information. In 11th Workshop on positioning, navigation and communication (WPNC).

  46. Mazuelas, S., Bahillo, A., Lorenzo, R. M., Fernandez, P., Lago, F. A., Garcia, E., & Abril, E. J. (2009). Robust indoor positioning provided by real-time RSSI values in unmodified WLAN networks. IEEE Journal of Selected Topics in Signal Processing, 3(5), 821–831.

    Article  Google Scholar 

  47. Tan, L., & Jiang, J. (2013). Digital signal processing: Fundamentals and applications. Burlington, MA (USA): Academic Press.

    Book  Google Scholar 

  48. URL2, Texas Instruments, Texas, US. CC2538-CC2592 Evaluation Module Kit Quick Start Guide (datasheet). 3 pages. [Online] Cited 2018-03-28. Available at: http://www.ti.com/lit/ml/swru363/swru363.pdf

  49. Suman, K. D., & Pasan, M. K. (2016). Design and methodology of automated guided vehicle-a review. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 29–36.

  50. Nelson, W. L., & Cox, I. J. (1990). Local path control for an autonomous vehicle. In CoxGordon I. In & J. & Wilfong G.T. (Eds.), Autonomous robot vehicles. New York: Springer.

  51. Ye, C., Jiang, X., Yu, S., & Jiang, C. (2016). A tracking method of an assembling Omni-directional mobile robot. In IEEE International Conference on Robotics and Biomimetics (ROBIO).

Download references

Acknowledgements

This study was supported by Karadeniz Technical University Scientific Research Projects Coordination Unit under Grant No: FDK-2016-5410.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gokce Hacioglu.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hacioglu, G., Sesli, E. Improved RSS Based Distance Estimation for Autonomous Vehicles. Wireless Pers Commun 125, 325–350 (2022). https://doi.org/10.1007/s11277-022-09552-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09552-x

Keywords

Navigation