Skip to main content
Log in

Detection of Abnormal Activities from Various Signals Based on Statistical Analysis

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Low-frequency signals comprise different types such as Electroencephalogram (EEG), gyroscope and seismic signals. Processing of EEG signals is performed for tasks such as seizure prediction and detection. On the other hand, processing of seismic and gyroscope signals is performed for tasks such as activity classification. This paper presents two efficient models for anticipation of anomalies from low-frequency signals. A detailed study of EEG seizure prediction is introduced in this paper based on wavelet-domain processing and compression techniques as an example. The first model uses different families of wavelet transform, while the second one concentrates on lossy compression techniques and their effect on further processing for seizure prediction in a realistic signal acquisition and compression scenario. The prediction approach adopts statistical processing with training and testing phases. The training phase comprises estimation of six signal attributes: amplitude, derivative, local mean, local variance, local median and entropy. On the other hand, the testing phase is performed with a thresholding strategy on the selected  probability bins. A majority voting strategy with a moving average smoothing filter is used for decision making. The suggested models are executed on long-term EEG recordings from the available Physio-Net EEG dataset. Simulation results in the first model show that the Daubechies wavelets demonstrate the best prediction results as the filter lengths in these wavelets are longer than those in the Haar wavelet. The obtained results in the second model prove the feasibility of lossy compression, especially Discrete Cosine Transform (DCT) compression for seizure prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request. Available from the corresponding author on reasonable request.

Code availability

The custom code is available.

References

  1. Khan, M. A., Rubab, S., Kashif, A., Sharif, M. I., Muhammad, N., Shah, J. H., & Satapathy, S. C. (2020). Lung’s cancer classification from CT images: An integrated design of contrast based classical features fusion and selection. Pattern Recognition Letters, 129, 77–85.

    Article  Google Scholar 

  2. Sharif, M., Amin, J., Nisar, M. W., Anjum, M. A., Muhammad, N., & Shad, S. A. (2020). A unified patch-based method for brain tumor detection using features fusion. Cognitive Systems Research, 59, 273–286.

    Article  Google Scholar 

  3. Naz, I., Muhammad, N., Yasmin, M., Sharif, M., Shah, J. H., & Fernandes, S. L. (2019). Robust discrimination of leukocytes protuberant types for early diagnosis of leukemia. Journal of Mechanics in Medicine and Biology, 19(06), 1950055.

    Article  Google Scholar 

  4. Tetzlaff, R., & Senger, V. (2012). The seizure prediction problem in epilepsy: Cellular nonlinear networks. IEEE Circuits and Systems Magazine, 12(4), 8–20.

    Article  Google Scholar 

  5. Niknazar, H., Maghooli, K., & Nasrabadi, A. M. (2015). Epileptic seizure prediction using statistical behavior of local extrema and fuzzy logic system. International Journal of Computer Applications, 113(2), 24–30.

    Article  Google Scholar 

  6. Stein, A. G., Eder, H. G., Blum, D. E., Drachev, A., & Fisher, R. S. (2000). An automated drug delivery system for focal epilepsy. Epilepsy research, 39(2), 103–114.

    Article  Google Scholar 

  7. Ashar, S. M., ur Rehman, A. H. M., Kamal, Z., Faheem, M., Abbas, S. A., & Yasmeen, S. (2017). Prevalence and Awareness Survey of Epilepsy amongst School Children in Tehsil Takht Bhai, Pakistan. International Journal of Basic Medical Sciences and Pharmacy (IJBMSP)6(2).

  8. Zandi, A. S., Tafreshi, R., Javidan, M., & Dumont, G. A. (2013). Predicting epileptic seizures in scalp EEG based on a variational Bayesian Gaussian mixture model of zero-crossing intervals. IEEE Transactions on Biomedical Engineering, 60(5), 1401–1413.

    Article  Google Scholar 

  9. Sriraam, N. (2012). A high-performance lossless compression scheme for EEG signals using wavelet transform and neural network predictors. International Journal of Telemedicine and Applications, 2012, 1–8. https://doi.org/10.1155/2012/302581

    Article  Google Scholar 

  10. Gupta, R., Kumar, M., & Bathla, R. (2016). Data compression-lossless and lossy techniques. International Journal of Application or Innovation in Engineering and Management, 5(7), 120–125.

    Google Scholar 

  11. Ma, D., Zheng, J., & Peng, L. (2021). Performance evaluation of epileptic seizure prediction using time, frequency, and time-frequency domain measures. Processes, 9(4), 682.

    Article  Google Scholar 

  12. Ryu, S., & Joe, I. (2021). A hybrid dense Net-LSTM model for epileptic seizure prediction. Applied Sciences, 11(16), 7661.

    Article  Google Scholar 

  13. Messaoud, R. B., & Chavez, M. (2021). Random Forest classifier for EEG-based seizure prediction. arXiv preprint https://arxiv.org/abs/2106.04510.

  14. Das, K., Daschakladar, D., Roy, P. P., Chatterjee, A., & Saha, S. P. (2020). Epileptic seizure prediction by the detection of seizure waveform from the pre-ictal phase of EEG signal. Biomedical Signal Processing and Control, 57, 101720.

    Article  Google Scholar 

  15. Büyükçakır, B., Elmaz, F., & Mutlu, A. Y. (2020). Hilbert Vibration Decomposition-based epileptic seizure prediction with neural network. Computers in Biology and Medicine, 119, 103665.

    Article  Google Scholar 

  16. Rukhsar, S., Khan, Y. U., Farooq, O., Sarfraz, M., & Khan, A. T. (2019). Patient-specific epileptic seizure prediction in long-term scalp EEG signal using multivariate statistical process control. Irbm, 40(6), 320–331.

    Article  Google Scholar 

  17. Karthick, P. A., Tanaka, H., Khoo, H. M., & Gotman, J. (2018). Prediction of secondary generalization from a focal onset seizure in intracerebral EEG. Clinical Neurophysiology, 129(5), 1030–1040.

    Article  Google Scholar 

  18. Bhattacharyya, A., & Pachori, R. B. (2017). A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform. IEEE Transactions on Biomedical Engineering, 64(9), 2003–2015.

    Article  Google Scholar 

  19. Truong, N. D., Nguyen, A. D., Kuhlmann, L., Bonyadi, M. R., Yang, J., Ippolito, S., & Kavehei, O. (2018). Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram. Neural Networks, 105, 104–111.

    Article  Google Scholar 

  20. Vahabi, Z., Amirfattahi, R., Shayegh, F., & Ghassemi, F. (2015). Online epileptic seizure prediction using wavelet-based bi-phase correlation of electrical signals tomography. International journal of neural systems, 25(06), 1550028.

    Article  Google Scholar 

  21. Hung, S. H., Chao, C. F., Wang, S. K., Lin, B. S., & Lin, C. T. (2010). VLSI implementation for epileptic seizure prediction system based on wavelet and chaos theory. in TENCON 2010–2010 IEEE Region 10 Conference (pp. 364–368). IEEE.

  22. Gadhoumi, K., Lina, J. M., & Gotman, J. (2013). Seizure prediction in patients with mesial temporal lobe epilepsy using EEG measures of state similarity. Clinical Neurophysiology, 124(9), 1745–1754.

    Article  Google Scholar 

  23. Karimu, R. Y., & Azadi, S. (2016). Lossless EEG compression using the DCT and the Huffman coding.

  24. Alsenwi, M., Saeed, M., Ismail, T., Mostafa, H., & Gabran, S. (2017). Hybrid compression technique with data segmentation for electroencephalography data. in 2017 29th International Conference on Microelectronics (ICM) (pp. 1–4). IEEE.

  25. Cárdenas-Barrera, J. L., Lorenzo-Ginori, J. V., & Rodríguez-Valdivia, E. (2004). A wavelet-packets based algorithm for EEG signal compression. Medical informatics and the Internet in medicine, 29(1), 15–27.

    Article  Google Scholar 

  26. Elsayed, M., Mahmuddin, M., Badawy, A., Elfouly, T., Mohamed, A., & Abualsaud, K. (2017, March). Walsh transform with moving average filtering for data compression in wireless sensor networks. in 2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA) (pp. 270–274). IEEE.

  27. Birvinskas, D., Jusas, V., Martisius, I., & Damasevicius, R. (2015). Fast DCT algorithms for EEG data compression in embedded systems. Computer Science and Information Systems, 12(1), 49–62.

    Article  Google Scholar 

  28. Titus, G., & Sudhakar, M. S. (2020). A simple but efficient EEG data compression algorithm for neuromorphic applications. IETE Journal of Research, 66(3), 303–314.

    Article  Google Scholar 

  29. http://physionet.org/pn6/chbmit/. (Access Data march 2018)

  30. Goldberger, A. L., Amaral, L. A., Glass, L., Haus Dorff, J. M., Ivanov, P. C., Mark, R. G., & Stanley, H. E. (2000). Physio Bank Physio Toolkit and Physio Net: components of a new research resource for complex physiologic signals. Circulation, 101(23), e215–e220.

    Article  Google Scholar 

  31. Malik, A. S., & Amin, H. U. (2017). Designing EEG experiments for studying the brain: Design code and example datasets. Academic Press.

    Google Scholar 

  32. Saroya, N., & Kaur, P. (2014). Analysis of image compression algorithm using DCT and DWT transforms. International Journal of Advanced Research in Computer Science and Software Engineering, 4(2), 897–900.

    Google Scholar 

  33. https://en.wikipedia.org/wiki/Discrete_cosine_transform. (Access date 11 March 2019)

  34. https://en.wikipedia.org/wiki/Discrete_sine_transform . (Access date 11 March 2019)

  35. Howedi, A., Lotfi, A., & Pourabdollah, A. (2020). An entropy-based approach for anomaly detection in activities of daily living in the presence of a visitor. Entropy, 22(8), 845.

    Article  Google Scholar 

  36. El-Gindy, S. A. E., Hamad, A., El-Shafai, W., Khalaf, A. A., El-Dolil, S. M., Taha, T. E., ... & Abd El-Samie, F. E. (2021). Efficient communication and EEG signal classification in wavelet domain for epilepsy patients. Journal of Ambient Intelligence and Humanized Computing, 1–16.

  37. Phung, D. Q., Tran, D., Ma, W., Nguyen, P., & Pham, T. (2014). Using shannon entropy as EEG signal feature for fast person identification. In ESANN, 4(1), 413–418.

    Google Scholar 

  38. Abd El-Samie, F. E. (2011). Information security for automatic speaker identification. Information security for automatic speaker identification, 1–122.

  39. Gallagher, N. C. (1988). Median filters: a tutorial. In: 1988., IEEE International Symposium on Circuits and Systems (pp. 1737–1744). IEEE

  40. Kuo, S. M., Lee, B. H., & Tian, W. (2013). Real-time digital signal processing: Fundamentals, implementations and applications. John Wiley.

    Google Scholar 

  41. Stolojescu, C., Railean, I., Moga, S., & Isar, A. (2010, May). Comparison of wavelet families with application to WiMAX traffic forecasting. In: 2010 12th international conference on optimization of electrical and electronic equipment (pp. 932–937). IEEE.

  42. Faust, O., Acharya, U. R., Adeli, H., & Adeli, A. (2015). Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis. Seizure, 26, 56–64.

    Article  Google Scholar 

  43. Chiang, C. Y., Chang, N. F., Chen, T. C., Chen, H. H., & Chen, L. G. (2011, September). Seizure prediction based on classification of EEG synchronization patterns with on-line retraining and post-processing scheme. in: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 7564–7569). IEEE.

  44. Elgohary, S., Eldawlatly, S., & Khalil, M. I. (2016, October). Epileptic seizure prediction using zero-crossings analysis of EEG wavelet detail coefficients. in: 2016 IEEE conference on computational intelligence in bioinformatics and computational biology (CIBCB) (pp. 1–6). IEEE.

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saly Abd-Elateif El-Gindy.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Gindy, S.AE., Ibrahim, F.E., Alabasy, M. et al. Detection of Abnormal Activities from Various Signals Based on Statistical Analysis. Wireless Pers Commun 125, 1013–1046 (2022). https://doi.org/10.1007/s11277-022-09565-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09565-6

Keywords

Navigation