Abstract
Communication of information over the open network is always vulnerable to the data being transferred. Data could be of text, image, video or any other format. Classified data in the form of images, such as, medical record, medical images, insurance policy documents, bank statements, personal identification cards are communicated in these medium. Security to such data is an important concern. Visual secret sharing (VSS) is an encryption scheme to encode classified image data and dividing in to shares. The shares are communicated to the members from source. At the destination, the shares are decoded to reconstruct the classified image data. Individual shares do not disclose the classified information. The shares are communicated to multiple members over the unguarded network. The integrity of the restructured classified image is an important factor to be considered in VSS. In this research paper, a new Cheating prevention by self-authentication (CPS) is proposed to verify the reconstructed image for its integrity. The proposed method ensures no additional share or third party is involved for its verification. Also, the proposed method works on \((n,n)\) VSS scheme and supports color classified image.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-022-09628-8/MediaObjects/11277_2022_9628_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-022-09628-8/MediaObjects/11277_2022_9628_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-022-09628-8/MediaObjects/11277_2022_9628_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-022-09628-8/MediaObjects/11277_2022_9628_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-022-09628-8/MediaObjects/11277_2022_9628_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-022-09628-8/MediaObjects/11277_2022_9628_Fig6_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-022-09628-8/MediaObjects/11277_2022_9628_Fig7_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-022-09628-8/MediaObjects/11277_2022_9628_Fig8_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-022-09628-8/MediaObjects/11277_2022_9628_Fig9_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11277-022-09628-8/MediaObjects/11277_2022_9628_Fig10_HTML.png)
Similar content being viewed by others
Data Availability
Not Applicable.
Code Availability
Not Applicable.
References
Naor, M., & Shamir, A. (1995). Visual cryptography. In A. De Santis (Ed.), Advances in cryptology EUROCRYPT’94 (pp. 1–12). Springer. https://doi.org/10.1007/BFb0053419
Deshmukh, M., Nain, N., & Ahmed, M. (2018). Efficient and secure multi secret sharing schemes based on boolean XOR and arithmetic modulo. Multimedia Tools and Applications, 77(1), 89–107. https://doi.org/10.1007/s11042-016-4229-x
Wu, X., & Sun, W. (2013). Random grid-based visual secret sharing with abilities of OR and XOR decryptions. Journal of Visual Communication and Image Representation, 24(1), 48–62. https://doi.org/10.1016/j.jvcir.2012.11.001
Verheul, E. R., & Tilborg, H. C. A. (1997). Constructions and properties of k out of n visual cryptographic protocols Designs Codes. Cryptography, 2, 179–196.
Jia, X., Wang, D., Nie, D., & Zhang, C. (2018). Collaborative visual cryptography schemes. IEEE Transactions on Circuits and Systems for Video Technology, 28(5), 1056–1070. https://doi.org/10.1109/TCSVT.2016.2631404
Mhala, N. C., Jamal, R., & Pais, A. R. (2018). Randomised visual secret sharing scheme for grey-scale and colour images. IET Image Processing, 12(3), 422–431. https://doi.org/10.1049/iet-ipr.2017.0759
Blesswin, J., Christhuraj, M. R., Sukumaran, R., & SelvaMary, G. (2020). Enhanced semantic visual secret sharing scheme for the secure image communication. Multimedia Tools and Applications, 79, 17057–17079. https://doi.org/10.1007/s11042-019-7535-2
Selvamary, G., & ManojKumar, S. (2019). A self-verifiable computational visual cryptographic protocol for secure two-dimensional image communication. Measurement Science and Technology, 30(12), 125404. https://doi.org/10.1088/1361-6501/ab2faa
Selvamary, G., & ManojKumar, S. (2020). Secure grayscale image communication using significant visual cryptography scheme in real time applications. Multimedia Tools and Applications, 79(1), 10363–10382. https://doi.org/10.1007/s11042-019-7202-7
Sridhar, S., Sathishkumar, R., & Sudha, G. (2017). Adaptive halftoned visual cryptography with improved quality and security. Multimedia Tools and Applications, 76(1), 815–834. https://doi.org/10.1007/s11042-015-3066-7
Wu, X., Liu, T., & Sun, W. (2013). Improving the visual quality of random grid-based visual secret sharing via error diffusion. Journal of Visual Communication and Image Representation, 24, 552–566.
Yan, B., Xiang, Y., & Hua, G. (2019). Improving the visual quality of size-invariant visual cryptography for grayscale images: An analysis-by-synthesis (AbS) approach. IEEE Transactions on Image Processing, 28(2), 896–911. https://doi.org/10.1109/TIP.2018.2874378
Yan, X., Wang, S., El-Latif, A., & Niu, X. (2015). Random grids-based visual secret sharing with improved visual quality via error diffusion. Multimedia Tools and Applications, 74(21), 9279–9296. https://doi.org/10.1007/s11042-014-2080-5
Harn, L., & Lin, C. (2009). Detection and identification of cheaters in (t, n) secret sharing scheme. Designs, Codes and Cryptography, 52(1), 15–24. https://doi.org/10.1007/s10623-008-9265-8
Lin, C.-H., Chen, T.-H., Wu, Y.-T., Tsao, K.-H., & Lin, K. H. (2013). Multi-factor cheating prevention in visual secret sharing by hybrid codebooks. Journal of Visual Communication and Image Representation, 25(7), 1543–2155. https://doi.org/10.1016/j.jvcir.2014.06.011
Ren, Y., Liu, F., Guo, T., Feng, R., & Lin, D. (2016). Cheating prevention visual cryptography scheme using Latin square. IET Information Security, 11(4), 211–219. https://doi.org/10.1049/iet-ifs.2016.0126
Dehkordi, M. H., & Farzaneh, Y. (2015). A new verifiable multi-secret sharing scheme realizing adversary structure. Wireless Personal Communications, 82(3), 1749–1758. https://doi.org/10.1007/s11277-015-2310-9
Dehkordi, M. H., & Ghasemi, R. (2016). A lightweight public verifiable multi secret sharing scheme using short integer solution. Wireless Personal Communications, 91(3), 1459–1469. https://doi.org/10.1007/s11277-016-3539-7
Eslami, Z., & Rad, S. K. (2012). A new verifiable multi-secret sharing scheme based on bilinear maps. Wireless Personal Communications, 63(2), 459–467. https://doi.org/10.1007/s11277-010-0143-0
Hu, C., Liao, X., & Cheng, X. (2012). Verifiable multi-secret sharing based on LFSR sequences. Theoretical Computer Science, 445, 52–62. https://doi.org/10.1016/j.tcs.2012.05.006
Mashhadi, S., & Dehkordi, M. H. (2015). Two verifiable multi secret sharing schemes based on nonhomogeneous linear recursion and LFSR public-key cryptosystem. Information Sciences, 294, 31–40. https://doi.org/10.1016/j.ins.2014.08.046
Wang, S. J., Tsai, Y. R., & Shen, C. C. (2011). Verifiable threshold scheme in multi-secret sharing distributions upon extensions of ECC. Wireless Personal Communications, 56(1), 173–182. https://doi.org/10.1007/s11277-009-9875-0
Wu, T. Y., & Tseng, Y. M. (2011). A pairing-based publicly verifiable secret sharing scheme. Journal of Systems Science and Complexity, 24(1), 186–194. https://doi.org/10.1007/s11424-011-8408-6
Zhao, J., Zhang, J., & Zhao, R. (2007). A practical verifiable multi-secret sharing scheme. Computer Standards & Interfaces, 29(1), 138–141. https://doi.org/10.1016/j.csi.2006.02.004
Fu, Z., Cheng, Y., & Yu, B. (2018). Visual cryptography scheme with meaningful shares based on QR codes. IEEE Access, 6, 59567–59574. https://doi.org/10.1109/ACCESS.2018.2874527
Ateniese, G., Blundo, C., De Santis, A., & Stinson, D. R. (2001). Extended capabilities for visual cryptography. Theoretical Computer Science, 250, 143–161. https://doi.org/10.1016/S0304-3975(99)00127-9
Blundo, C., Santis, A. D., & Naor, M. (2000). Visual cryptography for grey level images. Information Processing Letters, 6, 255–259. https://doi.org/10.1016/S0020-0190(00)00108-3
Wang, D. S., Song, T., Dong, L., & Yang, C.-N. (2013). Optimal contrast grayscale visual cryptography schemes with reversing. IEEE Transactions, 8(12), 2059–2072. https://doi.org/10.1109/TIFS.2013.2281108
Mudia, H. M., & Chavan, P. V. (2016). Fuzzy logic based image encryption for confidential data transfer using (2, 2) secret sharing scheme. Procedia Computer Science, 78, 632–639. https://doi.org/10.1016/j.procs.2016.02.110
Funding
Not Applicable.
Author information
Authors and Affiliations
Contributions
All authors contributed to the study conception, design and implementation. Material preparation, data collection and analysis were performed by AJB, GSM, SMK. The first draft of the manuscript was written by AJB, and GSM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. GSM acts on behalf of all co-authors and ensures that questions related to the accuracy or integrity of any part of the work.
Corresponding author
Ethics declarations
Conflict of interest
Not Applicable.
Ethical Approval
Not Applicable.
Consent to Participate
All authors provided their concern to participate in this journal.
Consent for Publication
All authors provided their concern to publish the paper in this journal.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Selva Mary, G., Blesswin, A.J. & Kumar, S.M. Self-authentication Model to Prevent Cheating Issues in Grayscale Visual Secret Sharing Schemes. Wireless Pers Commun 125, 1695–1714 (2022). https://doi.org/10.1007/s11277-022-09628-8
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-022-09628-8