Skip to main content
Log in

Epidemic Models of Malicious-Code Propagation and Control in Wireless Sensor Networks: An Indepth Review

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Besides anti-malware usage for the eradication of malicious attacks, researchers have developed epidemic models in order to gain more insights into the spread patterns of malware. For wireless sensor networks (WSN), these epidemic models, which are equation-based, have been seen to characterize both salient features of the network as well as the dynamics of malware distribution. In this study, an in-depth review aimed at generating the strengths and weaknesses of Susceptible-Infected (SI)-based compartmental models of malware spread in WSN was performed. Emphasis is placed on models resulting from the biological SI model developed by Kermack and Mckendrick, and its subsequent adaptation for malware spread in communication networks. Specifically, lessons and open areas were presented in accordance with the following factors: communication graph/topology, multigroup modeling, horizontal/vertical transmission (VT), communication range and density, patching, protocols, sensor mobility, energy consumption, optimal control/cost, stability, delay analysis, and numerical simulation. Amongst several findings, it was discovered that epidemic WSN models are yet to sufficiently represent medium access control, VT, alongside limited battery power, memory, authentication (using key schemes), survivability and availability etc. Additionally, only a few epidemic models have been developed to represent botnet propagation, concurrent multiple malware infection types, and sensor mobility in WSN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Not Applicable.

Code Availability

Not Applicable.

References

  1. Priyadarshi, R., Gupta, B., & Anurag, A. (2020). Deployment techniques in wireless sensor networks: A survey, classification, challenges, and future research issues. The Journal of Supercomputing. https://doi.org/10.1007/s11227-020-03166-5

    Article  Google Scholar 

  2. Rashid, B., & Rehmani, M. H. (2016). Applications of wireless sensor networks for urban areas: A survey. The Journal of Network and Computer Applications, 60, 192–219.

    Article  Google Scholar 

  3. Mishra, A., Shukla, S., Singh, A. K., & Gupta, A. (2020). DTSS and clustering for energy conservation in wireless sensor network. Advances in Intelligent systems and computing, 1125, 43-50. https://doi.org/10.1007/978-981-15-2780-7_6

  4. Lopez-Ardao, J. C., Rodríguez-Rubio, R. F., Suárez-González, A., Rodríguez-Pérez, M., & Sousa-Vieira, M. E. (2021). Current trends on green wireless sensor networks. Sensors, 21(4281), 1–34.

    Google Scholar 

  5. Adu-Manu, K. S., Adam, N., Tapparello, C., Ayatollahi, H., & Heinzelman, W. (2018). Energy-harvesting wireless sensor networks (EH-WSNs): A review. ACM Transactions on Sensor Networks, 14(2), 1–50.

    Article  Google Scholar 

  6. Kanoun, O., Bradai, S., Khriji, S., Bouattour, G., El Houssaini, D., Ben Ammar, M., Naifar, S., Bouhamed, A., Derbel, F., & Viehweger, C. (2021). Energy-aware system design for autonomous wireless sensor nodes: A comprehensive review. Sensors, 21(548), 1–25.

    Google Scholar 

  7. Mishra, B. K., & Tyagi, I. (2014). “Defending against malicious threats in wireless sensor network: A mathematical model. International Joural of Information Technology and Computer Science, 3(4), 12–19.

    Article  Google Scholar 

  8. Rajaram, V., & Kumaratharan, N. (2021). Multi-hop optimized routing algorithm and load balanced fuzzy clustering in wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, 12, 4281–4289.

    Article  Google Scholar 

  9. Wang, X., He, Z., Zhao, X., Lin, C., Pan, Y., & Cai, Z. (2013). Reaction-diffusion modeling of malware propagation in mobile wireless sensor networks. Science China Information Sciences, 56, 2013.

    Article  Google Scholar 

  10. Avram, F., Adenane, R., & Ketcheson, D. I. (2021). A review of matrix SIR arino epidemic models. Mathematics, 9(1513), 1–14.

    Google Scholar 

  11. Srinivas, M. N., Madhusudanan, V., Murty, A. V. S., & Bapu, B. R. T. (2021). A review article on wireless sensor networks in view of e-epidemic models. Wireless Personal Communications. https://doi.org/10.1007/s11277-021-08436-w

    Article  Google Scholar 

  12. Jiang, L., Xu, Q., Pan, H., Dai, Y., & Tong, J. (2020). Virus propagation in wireless sensor networks with media access control mechanism. Security and Communication Networks, 6513920, 1–11.

    Google Scholar 

  13. Liang, G., Weller, S. R., Zhao, J., Luo, F., & Dong, Z. Y. (2017). A framework for cyber-topology attacks: Line-switching and new attack scenarios. IEEE Transactions on Smart Grid, 10(2), 1704–1712.

    Article  Google Scholar 

  14. Goel, D., & Jain, A. K. (2017). Mobile phishing attacks and defense mechanisms: State of art and open research challenges. Computers & Security, 73, 519–544.

    Article  Google Scholar 

  15. Kak, A. (2021). Malware: Viruses and worms, lecture notes on computer and network security. Purdue University.

    Google Scholar 

  16. Wang, T., Wu, Q., Wen, S., Cai, Y., Tian, H., Chen, Y., & Wang, B. (2017). Propagation modeling and defending of a mobile sensor worm in wireless sensor and actuator networks. Sensors. https://doi.org/10.3390/s17010139

    Article  Google Scholar 

  17. Jalalitabar, M., Valero, M., & Bourgeois, A. G. (2015). Demonstrating the threat of hardware Trojans in wireless sensor networks. In 24th international conference on computer communication and networks, pp. 1-8. https://doi.org/10.1109/ICCCN.2015.7288392

  18. Acarali, D., Rajarajan, M., Komninos, N., & Zarpelão, B. B. (2019). Modelling the spread of botnet malware in IoT-based wireless sensor networks. Security and Communication Networks. https://doi.org/10.1155/2019/3745619

    Article  Google Scholar 

  19. Trend Micro Incorporated. (2019). Into the battlefield: A security guide to IoT Botnets. https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/into-the-battlefield-a-security-guide-to-iot-botnets

  20. Khayam, S. A., & Radha, H. (2005). A topologically-aware worm propagation model for wireless sensor networks. In 2nd Int’l workshop on security in distributed computing systems, USA.

  21. Xiaoming, W., & Yingshu, L. (2009). An improved SIR model for analyzing the dynamics of worm propagation in wireless sensor networks. Chinese Journal of Electronics, 18(1), 8–12.

    Google Scholar 

  22. Wang, X., Li, Q., & Li, Y. (2010). EiSIRS: A formal model to analyze the dynamics of worm propagation in wireless sensor networks. Journal of Combinatorial Optimization, 20, 47–62.

    Article  MathSciNet  MATH  Google Scholar 

  23. Mishra, B. K., & Keshri, N. (2013). Mathematical model on the transmission of worms in wireless sensor network. Applied Mathematical Modeling, 37, 4103–4111.

    Article  MathSciNet  MATH  Google Scholar 

  24. Mishra, B. K., Srivastava, S. K., & Mishra, B. K. (2014). A quarantine model on the spreading behavior of worms in wireless sensor network. Transaction on IoT and Cloud Computing, 2, 1–12.

    Google Scholar 

  25. Feng, L., Song, L., Zhao, Q., & Wang, H. (2015). H, “Modeling and stability analysis of worm propagation in wireless sensor network.” Mathematical Problems in Engineering, 129, 1–8.

    MathSciNet  Google Scholar 

  26. Nwokoye, C. H., Ejiofor, V. E., Orji, R., & Umeh, I. (2016). Investigating the effect of uniform random distribution of nodes in wireless sensor networks using an epidemic worm model. In Proceedings of the CORI’16, Ibadan, Nigeria, pp. 58–63. http://ceur-ws.org/Vol-1755/

  27. Khanh, N. H. (2016). Dynamics of a worm propagation model with quarantine in wireless sensor networks. Applied Mathematics & Information Sciences, 10, 1739–1746.

    Article  Google Scholar 

  28. Srivastava, A. P., Awasthi, S., Ojha, R. P., Srivastava, P. K., & Katiyar, S. (2016). Stability analysis of SIDR model for worm propagation in wireless sensor network. Indian Journal of Science and Technology, 9, 1–5.

    Google Scholar 

  29. Haghighi, M. S., Wen, S., Xiang, Y., Quinn, B., & Zhou, W. (2016). On the race of worms and patches: Modeling the spread of information in wireless sensor networks. IEEE Transactions on Information Forensics and Security, 11, 2854–2865.

    Article  Google Scholar 

  30. Nwokoye, C. H., Ejiofor, V. E., & Ozoegwu, C. G. (2017). Pre-Quarantine approach for defense against propagation of malicious objects in networks. International Journal of Computer Network and Information Security, 9, 43–52.

    Article  Google Scholar 

  31. Nwokoye, C. H., & Umeh, I. (2017). The SEIQR–V model: On a more accurate analytical characterization of malicious threat defense. International Journal of Information Technology and Computer Science, 12, 28–37.

    Article  Google Scholar 

  32. Nwokoye, C. H., Ejiofor, V. E., Onyesolu, M., & Ekechukwu, B. (2017). Towards modeling malicious agents in decentralized wireless sensor networks: A case of vertical worm transmissions and containment. International Journal of Computer Networks and Information Security, 9, 12–21.

    Article  Google Scholar 

  33. Nwokoye, C. H., Mbeledogu, N., Umeh, I. I., & Ejimofor, A. (2017). Modeling the effect of network access control and sensor random distribution on worm propagation. International Journal of Modern Education and Computer Science, 11, 49–57.

    Article  Google Scholar 

  34. Ojha, R. P., Sanyal, G., Srivastava, P. K., & Sharma, K. (2017). Design and analysis of modified SIQRS model for performance study of wireless sensor network. Scalable Computing, 18, 229–241.

    Google Scholar 

  35. Nwokoye, C. H., & Umeh, I. (2018). Analytic-agent cyber dynamical systems analysis and design methodology for modeling temporal/spatial factors of malware propagation in wireless sensor networks. Methodx. https://doi.org/10.1016/j.mex.2018.10.005

    Article  Google Scholar 

  36. Srivastava, P. K., Ojha, R. P., Sharma, K., Awasthi, S., & Sanyal, G. (2018). Effect of quarantine and recovery on infectious nodes in wireless sensor network. International Journal of Sensors, Wireless Communications and Control, 8, 26–36.

    Article  Google Scholar 

  37. Srivastava, P. K., Ojha, R. P., & Sanyal, G. (2018). Pre-vaccination and quarantine approach for defense against worms propagation of malicious objects in wireless sensor networks. International Journal of Information System Modeling and Design, 9, 1–23.

    Article  Google Scholar 

  38. Singh, A., Awasthi, A. K., Singh, K., & Srivastava, P. K. (2018). Modeling and analysis of worm propagation in wireless sensor networks. Wireless Personal Communications, 98, 2535–2551.

    Article  Google Scholar 

  39. Ojha, R. P., Sharma, K., Srivastava, P. K., & Sanyal, G. (2019). An epidemic model for security and performance of wireless sensor networks. International Journal of Advanced Intelligence Paradigms. https://doi.org/10.1504/IJAIP.2019.099947

    Article  Google Scholar 

  40. Ojha, R. P., Srivastava, P. K., Sanyal, G., & Gupta, N. (2020). Improved model for the stability analysis of wireless sensor network against malware attacks. Wireless Personal Communications. https://doi.org/10.1007/s11277-020-07809-x

    Article  Google Scholar 

  41. Guiyun, L., Baihao, P., Xiaojing, Z., & Xuejing, L. (2020). Differential games of rechargeable wireless sensor networks against malicious programs based on SILRD propagation model. Complexity. https://doi.org/10.1155/2020/5686413

    Article  Google Scholar 

  42. Zhang, Z., & Si, F. (2014). Dynamics of a delayed SEIRS-V model on the transmission of worms in a wireless sensor network. Advances in Difference Equations. https://doi.org/10.1186/1687-1847-2014-295

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, Z., & Wang, Y. (2017). Bifurcation analysis for an SEIRS-V model with delays on the transmission of worms in a wireless sensor network. Mathematical Problems in Engineering. https://doi.org/10.1155/2017/9898726

    Article  MathSciNet  MATH  Google Scholar 

  44. De, P., Liu, Y., & Das, S. K. (2006). Modeling node compromise spread in wireless sensor networks using epidemic theory. In International symposium on a world of wireless, mobile and multimedia networks, USA, pp. 237–243. https://doi.org/10.1109/WOWMOM.2006.74

  45. De, P., Liu, Y., & Das, S. K. (2007). An epidemic theoretic framework for evaluating broadcast protocols in wireless sensor networks. In Conference on mobile adhoc and sensor systems, Pisa, Italy.

  46. Tang, S., & Mark, B. L. (2009) Analysis of virus spread in wireless sensor networks: An epidemic model. In 7th international workshop on the design of reliable communication networks, Washington, USA.

  47. De, P., Liu, Y., & Das, S. K. (2009). Deployment aware modeling of node compromise spread in wireless sensor networks. IEEE Transaction in Sensor Network, 5, 23–35.

    Google Scholar 

  48. De, P., Liu, Y., & Das, S. K. (2009). An epidemic theoretic framework for vulnerability analysis of broadcast protocols in wireless sensor networks. IEEE Transactions in Mobile Computing, 6, 413–425.

    Article  Google Scholar 

  49. Anagnostopoulos, C., Hadjiefthymiades, S., & Zervas, E. (2011). An analytical model for multi-epidemic information dissemination. Journal of Parallel and Distributed Computing, 71, 87–104.

    Article  MATH  Google Scholar 

  50. Tang, S. S. (2011). A modified SI epidemic model for combating virus spread in wireless sensor networks. International Journal of Wireless Information Networks, 18, 319–338.

    Article  Google Scholar 

  51. Tang, S., & Li, W. (2011). An epidemic model with adaptive virus spread control for wireless sensor networks. International Journal of Security and Networks, 6, 201–210.

    Article  Google Scholar 

  52. Wang, Y. Q., & Yang, X. Y. (2013). Virus spreading in wireless sensor networks with a medium access control mechanism. Chinese Physics B, 22, 1–5.

    Google Scholar 

  53. Tang, S., Myers, D., & Yuan, J. (2013). Modified SIS epidemic model for analysis of virus spread in wireless sensor networks. International Journal of Wireless and Mobile Computing, 6(2), 34–45.

    Article  Google Scholar 

  54. Upadhyay, R. K., Kumari, S., & Misra, A. K. (2017). Modeling the virus dynamics in computer network with SVEIR model and nonlinear incident rate. Journal of Applied Mathematics and Computing, 54, 485–509.

    Article  MathSciNet  MATH  Google Scholar 

  55. Shakya, R. K. (2018) Modified SI epidemic model for combating virus spread in spatially correlated wireless sensor networks, pp. 1–12. arXiv:1801.04744

  56. Tang, S., & Tang, C. (2018). A dual SIS epidemic model for virus spread analysis in cluster-based wireless sensor networks. Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering, 251, 652–662. https://doi.org/10.1007/978-3-030-00557-3_65

  57. Liu, G., Li, J., Liang, Z., & Peng, Z. (2021). Analysis of time-delay epidemic model in rechargeable wireless sensor networks. Mathematics, 9, 1–19.

    Article  Google Scholar 

  58. Liu, G., Li, J., Liang, Z., & Peng, Z. (2021). Dynamical behavior analysis of a time-delay SIRS-L model in rechargeable wireless sensor networks. Mathematics, 9, 1–21.

    Article  Google Scholar 

  59. Ji, Y., Yao, L., Liu, S., Yao, H., Ye, Q., & Wang, R. (2018). The study on the botnet and its prevention policies in the internet of things. In Proceedings of the IEEE 22nd international conference on computer supported cooperative work in design (pp. 837–842). IEEE.

  60. Ibrahim, M., Abdullah, M. T., Abdullah, A., & Perumal, T. (2019). Modelling and mitigation strategy of IoT botnet propagation. Preprints. https://doi.org/10.20944/preprints201912.0097.v1

    Article  Google Scholar 

  61. Nicholas, C., Prakash, B. A., Tong, H. H., & Faloutsos, M. (2011). Epidemic spread in mobile ad hoc networks: Determining the tipping point. In 10th international IFIP TC 6 networking conference, Spain, 6640, 266-280. https://doi.org/10.1007/978-3-642-20757-0_21

  62. Nwokoye, C. H., Umeh, I., & Ositanwosu, O. (2021). Characterization of heterogeneous malware contagions in wireless sensor networks: A case of uniform random distribution. In Lecture notes on networks and systems: ICT analysis and applications. (Vol. 2).

  63. Nwokoye, C. H., Umeugoji, C., & Umeh, I. (2020). Evaluating degrees of differential infections on sensor networks’ features using the SEjIjR-V epidemic model. Egyptian Computer Science Journal, 44, 86–97.

    Google Scholar 

  64. Ojha, R. P., Srivastava, P. K., & Sanya, G. (2018). Mathematical model for wireless sensor network with two latent periods. Next-generation networks, advances in intelligent systems and computing, 638, 497–504. https://doi.org/10.1007/978-981-10-6005-2_50

  65. Liu, G., Peng, Z., Liang, Z., Li, J., & Cheng, L. (2021). Dynamics analysis of a wireless rechargeable sensor network for virus mutation spreading. Entropy, 23, 572.

    Article  MathSciNet  Google Scholar 

  66. Di Pietro, R., & Verde, N. V. (2013). Epidemic theory and data survivability in unattended wireless sensor networks: Models and gaps. Pervasive and Mobile Computing, 9, 588–597.

    Article  Google Scholar 

  67. Shen, S., Huang, L., Liu, J., Champion, A. C., Yu, S., & Cao, Q. (2016). Reliability evaluation for clustered wsns under malware propagation. Sensors. https://doi.org/10.3390/s16060855

    Article  Google Scholar 

  68. Aliberti, G., Di-Pietro, R., & Guarino, S. (2017). Epidemic data survivability in unattended wireless sensor networks: New models and results. Journal of Network and Computer Applications, 99, 146–165.

    Article  Google Scholar 

  69. Zhang, Z., Kundu, S., & Wei, R. (2019). A delayed epidemic model for propagation of malicious codes in wireless sensor network. Mathematics, 7(396), 1–17.

    Google Scholar 

  70. Wu, X., Cao, Q., Jin, J., Li, Y., & Zhang, H. (2019). Nodes availability analysis of nb-iot based heterogeneous wireless sensor networks under malware infection. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2019/4392839

    Article  Google Scholar 

  71. Batista, F. K., Martín del Rey, A., & Queiruga-Dios, A. (2020). A new individual-based model to simulate malware propagation in wireless sensor networks. Mathematics, 8, 1–23.

    Article  Google Scholar 

  72. Biswal, S. R., & Swain, S. K. (2019). Model for study of malware propagation dynamics in wireless sensor network. In 3rd international conference on trends in electronics and informatics, 647-653. https://doi.org/10.1109/ICOEI.2019.8862736.

  73. Shen, S., Zhou, H., Feng, S., Liu, J., & Cao, Q. (2019). SNIRD: Disclosing rules of malware spread in heterogeneous wireless sensor networks. IEEE Access, 7, 92881–92892.

    Article  Google Scholar 

  74. Shen, S., Zhou, H., Feng, S., Huang, L., Liu, J., Yu, S., & Cao, Q. (2019). HSIRD: A model for characterizing dynamics of malware diffusion in heterogeneous WSNs. Journal of Network and Computer Applications, 146, 1–14.

    Article  Google Scholar 

  75. Muthukrishnan, S., Muthukumar, S., & Chinnadurai, V. (2020). Optimal control of malware spreading model with tracing and patching in wireless sensor networks. Wireless Personal Communication. https://doi.org/10.1007/s11277-020-07959-y

    Article  Google Scholar 

  76. Liu, G., Peng, B., Zhong, X., Cheng, L., & Li, Z. (2020). Attack-defense game between malicious programs and energy-harvesting wireless sensor networks based on epidemic modeling. Complexity. https://doi.org/10.1155/2020/3680518

    Article  MATH  Google Scholar 

  77. Zhang, H., Shen, S., Cao, Q., Wu, X., & Liu, S. (2020). Modeling and analyzing malware diffusion in wireless sensor networks based on cellular automaton. International Journal of Distributed Sensor Networks, 16(11), 1–9.

    Article  Google Scholar 

  78. Kumari, S., & Upadhyay, R. K. (2021). Exploring the behavior of malware propagation on mobile wireless sensor networks: Stability and control analysis. Mathematics and Computers in Simulation, 190, 246–269.

    Article  MathSciNet  MATH  Google Scholar 

  79. Xu, B., Lu, M., Zhang, H., & Pan, C. (2021). A novel multi-agent model for robustness with component failure and malware propagation in wireless sensor networks. Sensors, 21, 1–25.

    Google Scholar 

  80. Liu, G., Peng, B., & Zhong, X. (2021). A novel epidemic model for wireless rechargeable sensor network security. Sensors, 21, 123.

    Article  Google Scholar 

  81. Liu, G., Peng, B., & Zhong, X. (2021). Epidemic analysis of wireless rechargeable sensor networks based on an attack-defense game model. Sensors, 21, 594.

    Article  Google Scholar 

  82. Zhou, H., Shen, S., & Liu, J. (2020). Malware propagation model in wireless sensor networks under attack–defense confrontation. Computer Communications. https://doi.org/10.1016/j.comcom.2020.08.009

    Article  Google Scholar 

  83. Liu, G., Huang, Z., Wu, X., Liang, Z., Hong, F., & Su, X. (2021). Modelling and analysis of the epidemic model under pulse charging in wireless rechargeable sensor networks. Entropy. https://doi.org/10.3390/e23080927

    Article  MathSciNet  Google Scholar 

  84. Zhu, X., & Huang, J. (2021). Malware propagation model for cluster-based wireless sensor networks using epidemiological theory. PeerJ Computer Science. https://doi.org/10.7717/peerj-cs.728

    Article  Google Scholar 

  85. Ye, X., Xie, S., & Shen, S. (2021). SIR1R2: Characterizing malware propagation in WSNs with second immunization. IEEE Access, 9, 82083–82093.

    Article  Google Scholar 

  86. Serena, L., Ferretti, S., & D’Angelo, G. (2021). Cryptocurrencies activity as a complex network: Analysis of transactions graphs. Peer-to-Peer Networking and Applications. https://doi.org/10.1007/s12083-021-01220-4

    Article  Google Scholar 

  87. Wang, X., Wang, C., & Wang, K. (2020). Global dynamics of a novel deterministic and stochastic SIR epidemic model with vertical transmission and media coverage. Advances in Difference Equations. https://doi.org/10.1186/s13662-020-03145-3

    Article  MathSciNet  MATH  Google Scholar 

  88. Mishra, B. K., & Pandey, S. K. (2011). Dynamic model of worms with vertical transmission in computer network. Applied Mathematics and Computation, 217, 8438–8446.

    Article  MathSciNet  MATH  Google Scholar 

  89. More, A., & Raisinghani, V. (2017). A survey on energy efficient coverage protocols in wireless sensor networks. Journal of King Saud University - Computer and Information Sciences, 29(4), 428–448.

    Article  Google Scholar 

  90. Gautam, A. K., & Kumar, R. (2021). A comprehensive study on key management, authentication and trust management techniques in wireless sensor networks. SN Applied Sciences, 3, 50.

    Article  Google Scholar 

  91. Elhabyan, R., Shi, W., & St-Hilaire, M. (2019). Coverage protocols for wireless sensor networks: Review and future directions. Journal of Communications and Networks, 21(1), 45–60.

    Article  Google Scholar 

  92. Al Hayajneh, A., Bhuiyan, M. Z. A., & McAndrew, I. (2020). A novel security protocol for wireless sensor networks with cooperative communication. Computers. https://doi.org/10.3390/computers9010004

    Article  Google Scholar 

  93. Abdallah, W., & Boudriga, N. (2016). A location-aware authentication and key management scheme for wireless sensor networks. In 2016 22nd Asia-Pacific conference on communications, pp. 488–495.

  94. Bouazzi, I., Zaidi, M., Usman, M., & Shamim, M. Z. M. (2021). A new medium access control mechanism for energy optimization in WSN: Traffic control and data priority scheme. Journal on Wireless Communications and Networking, 42, 1–23.

    Google Scholar 

  95. Singh, J., Kaur, R., & Singh, D. (2020). A survey and taxonomy on energy management schemes in wireless sensor networks. Journal of Systems Architecture, 111, 1–22.

    Article  Google Scholar 

  96. Senouci, M. R., & Mellouk, A. (2016). Wireless sensor networks. Deploying wireless sensor networks (pp. 1–19). Elsevier.

    Google Scholar 

  97. Gupta, S., Verma, S., & Abrol, R. K. (2015). Towards achieving reliability in wireless sensor networks—a survey. International Journal of Control and Automation, 8, 417–440.

    Article  Google Scholar 

  98. Zhao, D., Zhou, Z., Wang, S., Liu, B., & Gaaloul, W. (2020). Reinforcement learning–enabled efficient data gathering in underground wireless sensor networks. Personal and Ubiquitous Computing. https://doi.org/10.1007/s00779-020-01443-x

    Article  Google Scholar 

  99. Awan, K. M., Shah, P. A., Iqbal, K., Gillani, S., Ahmad, W., & Nam, Y. (2019). Underwater wireless sensor networks: A review of recent issues and challenges. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2019/6470359

    Article  Google Scholar 

  100. Genta, A., Lobiyal, D. K., & Abawajy, J. H. (2019). Energy efficient multipath routing algorithm for wireless multimedia sensor network. Sensors (Basel), 19(17), 1–21. https://doi.org/10.3390/s19173642

    Article  Google Scholar 

  101. Wuke, Li., Guangluan, Y., & Xiaoxiao, C. (2020). Applications of deep extreme learning machine in network intrusion detection systems. IAENG International Journal of Computer Science, 47(2), 136–143.

    Google Scholar 

  102. Rehman, A., Rehman, S. U., & Raheem, H. (2018). Sinkhole attacks in wireless sensor networks: A survey. Wireless Personal Communications. https://doi.org/10.1007/s11277-018-6040-7

    Article  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

CHN had the idea for the article. CHN and VM performed the literature search and data analysis. CHN and VM drafted the work. CHN and VM critically revised the work.

Corresponding author

Correspondence to ChukwuNonso H. Nwokoye.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nwokoye, C.H., Madhusudanan, V. Epidemic Models of Malicious-Code Propagation and Control in Wireless Sensor Networks: An Indepth Review. Wireless Pers Commun 125, 1827–1856 (2022). https://doi.org/10.1007/s11277-022-09636-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09636-8

Keywords

Navigation