Skip to main content
Log in

A Design of Planar Monopole Antenna for Wireless Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper demonstrates the design of a planar monopole antenna with reduced size and high gain for wireless applications. In this design, a partial ground plane and semi-circular slots are being introduced in the rectangular patch. The proposed antenna is designed on minor cost FR4 glass epoxy substrate having thickness 1.6 mm with resonant frequency 2.5 GHz. Initially, the length of the partial ground plane (GL) and radius of semi-circular slots (R1) are varied with a step size of 0.5 mm and found optimal results at GL = 12 mm and R1 = 9.0 mm. The proposed antenna with a partial ground plane exhibits two resonant frequencies 2.59 GHz and 7.55 GHz with corresponding bandwidth 1061 MHz and 1075 MHz. It also reports the gain of 2.78 dB and 5.43 dB at respective frequencies. Further, the ground plane is modified to enhance the performance of the proposed antenna by employing vertical extension and its width has been varied to obtain the optimal results. At extension width Vex = 2.0 mm, the proposed antenna depicts the maximum gain of 11.91 dB, 6.73 dB and 5.92 dB at the respective frequency bands 1.21 GHz, 6.73 GHz, and 7.11 GHz. It also has been revealed that the frequency of the antenna is being budged towards the lower side from 2.59 GHz to 1.21 GHz; which plays a paramount role in the size reduction of proposed monopole antenna (almost by 78%). The proposed designed structure not only miniaturizes the size of the antenna but also useful for different wireless standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study. Kindly do not make accessible this manuscript on research square before publication because it is our Phd Work and we will not disclose it before publication.

References

  1. Raval, F., Kosta, Y. P., & Joshi, H. (2015). Reduced size patch antenna using complementary split ring resonator as defected ground plane. International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2015.04.013

    Article  Google Scholar 

  2. Sharma, N., Kaur, A., & Sharma, V. (2016). Miniaturization of fractal antenna using novel Giuseppe peano geometry for wireless applications. In 1st IEEE Int Conf on Pow Elect, Intel Cont and Ener Sys (ICPEICES), Delhi (pp. 1–4). https://doi.org/10.1109/ICPEICES.2016.7853633.

  3. Kaur, M., & Sivia, J. S. (2019). Minkowski, Giuseppe Peano and Koch curves based design of compact hybrid fractal antenna for biomedical applications using ANN and PSO. AEU - International Journal of Electronics and Communications, 99, 14–24.

  4. Kaur, M., & Sivia, J. S. (2020). Giuseppe Peano and Cantor set fractals-based miniaturized hybrid fractal antenna for biomedical applications using artificial neural network and firefly algorithm. International Journal of RF and Microwave Computer-Aided Engineering, 30(1), e22000.

  5. Jindal, S., Sivia, J. S., & Bindra, H. S. (2019). Hybrid fractal antenna using meander and minkowski curves for wireless applications. Wireless Personal Communications, 109, 1471–1490.

    Article  Google Scholar 

  6. Azra, A., & Dehmas, M. (2011). Patch antenna performances improvement employing slotted rectangular shaped For WLAN Applications. International Journal of Computer Science, 8(3), 254–258.

    Google Scholar 

  7. Sharma, N., Kaur, A., & Sharma, V. (2016) A novel design of circular fractal antenna using line feed for multiband applications. In 1st IEEE Int Conf on Pow Elect, Intel Cont and Ener Sys (ICPEICES), Delhi (pp. 1–4). https://doi.org/10.1109/ICPEICES.2016.7853608.

  8. Bhatia, S. S., & Sivia, J. S. (2018). Analysis and design of circular fractal antenna array for multiband applications. International Journal of Information Technology. https://doi.org/10.1007/s41870-018-0186-0

    Article  Google Scholar 

  9. Bangi, I. S., & Sivia, J. S. (2019). Moore, Minkowski and koch curves based hybrid fractal antenna for multiband applications. Wireless Personal Communications, 108, 2435–2448.

    Article  Google Scholar 

  10. Sidhu, A. K., & Sivia, J. S. (2018) A novel design of wideband koch like sided sierpinski square carpet multifractal antenna. Applied Computational Electromagnetics Society Journal (ACES), 33(8), 873–879.

  11. Sahoo, M., & Sahu, S. (2015). Design and development of UWB notch antenna with fractal geometry. In Int Conf on Circuits, Power and Computing Technology (ICCPCT) (pp. 1–5). https://doi.org/10.1109/ICCPCT.2015.7159387.

  12. Sahoo, M., Pattnaik, S., & Sahu, S. (2015). Design of compact UWB hexagonal monopole antenna with frequency notch characteristics. In Int Conf on Circuits, Power and Computing Technology (ICCPCT) (pp. 1–4). https://doi.org/10.1109/ICCPCT.2015.7159388.

  13. Sharma, N., Kaur, A., & Sharma, V. (2016). An optimal design of fractal antenna using modified Sierpinski carpet geometry for wireless applications. In Int Conf on Smart Trends for Inf Tech and Comp Comm (SmartCom, Springer) (pp. 400-407). https://doi.org/10.1007/978-981-10-3433-6_48.

  14. Bangi, I. S., & Sivia, J. S. (2018). Minkowski and Hilbert curves based hybrid fractal antenna for wireless applications. AEU-International Journal of Electronics and Communications, 85, 159–168.

    Google Scholar 

  15. Kaur, K., & Sivia, J. S. (2017). A compact hybrid multiband antenna for wireless applications. Springer International Journal of Wireless Personal Communication, 97(4), 5917–5927.

    Article  Google Scholar 

  16. Sivia, J. S., Kaur, G., & Sarao, A. K. (2017). A modified Sierpinski carpet fractal antenna for multiband applications. International Journal of Wireless personal communication, 95(4), 5917–5927.

  17. Bhatia, S. S., & Sivia, J. S. (2016). A novel design of circular monopole antenna for wireless applications. Wireless Personal Communaications, 91(3), 1153–1161.

    Article  Google Scholar 

  18. Mathews, M. M., Shambavi, K., & Alex, Z. C. (2014). Design of multi-fractal monopole antenna for UWB applications. In Int Conf on Green Comp Compu and Elect Engg (ICGCCEE) (pp. 1–4). https://doi.org/10.1109/ICGCCEE.2014.6922231.s.

  19. Ismahayati, A., Soh, P. J., Hadibah, R., & Vandenbosch, G. A. E. (2011). Design and analysis of a Multiband Koch Fractal Monopole Antenna. In IEEE Int RF and Micro Conf (RFM) (pp. 58-62). https://doi.org/10.1109/RFM.2011.6168695.

  20. Reddy, V. V., & Sarma, N. V. S. N. (2014). Compact circularly polarized asymmetrical fractal boundary Microstrip antenna for wireless applications. IEEE Antennas and Wireless Propagation Letters, 13, 118–121. https://doi.org/10.1109/LAWP.2013.2296951

    Article  Google Scholar 

  21. Elboushi, A., Sebak, A. (2012). High gain Microstrip Fed slot coupled hybrid antenna for MMW applications. In IEEE Radio and Wireless Symp (pp. 303–306). https://doi.org/10.1109/RWS.2012.6175329

  22. Kim, H. B., & Hwang, K. C. (2012). Dual-port Spidron fractal slot antenna for muliband gap filler applications. IEEE Transactions on Antennas and Propagations, 60(10), 4940–4943. https://doi.org/10.1109/TAP.2012.2201122

    Article  Google Scholar 

  23. Borakhade, D. K., & Pokle, S. B. (2015). Pentagon slot resonator frequency reconfigurable antenna for wideband reconfiguration. AEU-International Journal of Electronics and Communications, 69(10), 1562–1568. https://doi.org/10.1016/j.aeue.2015.06.012

    Article  Google Scholar 

  24. Bhatia, S. S., Sahni, A., & Rana, S. B. (2018). A novel design of compact monopole antenna with defected ground plane for wideband applications. Progress in Electromagnetics Research, 70, 21–31.

    Article  Google Scholar 

  25. Sharma, N., & Bhatia, S. S. (2019). Design of printed monopole antenna with band notch characteristics for ultra-wideband applications. International Journal of RF and Microwave Computer‐Aided Engineering. https://doi.org/10.1002/mmce.21894

    Article  Google Scholar 

  26. Kundu, A., Chakraborty, U., & Bhattacharjee, A. K. (2017). Design of a compact wideband microstrip antenna with very low VSWR for WiMAX applications. International Journal of Microwave and Wireless Technology, 9(3), 685–690.

    Article  Google Scholar 

  27. Kumar, S., & Vishwakarma, D. K. (2016). Miniaturized dual broadband hexagonal slot monopole antenna. IETE Journal of Research, 62(5), 671–678.

    Article  Google Scholar 

  28. Fei, P., Jiao, Y. C., Zhu, Y., & Zhang, F. S. (2012). Compact CPW-fed monopole antenna and miniaturized ACS-fed half monopole antenna for UWB applications. Microwave and Optical Technology Letters, 54(7), 1605–1609.

    Article  Google Scholar 

  29. Chen, G., Yang, X. L., & Wang, Y. (2012). Dual-band frequency-reconfigurable folded slot antenna for wireless communications. IEEE Antennas and Wireless Propagation Letters, 11, 1386–1389.

    Article  Google Scholar 

  30. Boukarkar, A., Lin, X., & Jiang, Y. (2016). A dual-band frequency-tunable magnetic dipole antenna for WiMAX/WLAN applications. IEEE Antennas and Wireless Propagation Letters, 15, 492–495.

    Article  Google Scholar 

  31. Bekali, Y. K., & Essaaidi, M. (2013). Compact reconfigurable dual frequency microstrip patch antenna for 3G and 4G mobile communication technologies. Microwave and Optical Technology Letters, 55(7), 1622–1626.

    Article  Google Scholar 

  32. Asif, S. M., Iftikhar, A., Khan, S. M., Usman, M., & Braaten, B. D. (2016). An E-shaped microstrip patch antenna for reconfigurable dual-band operation. Microwave and Optical Technology Letters, 58, 1485–1490.

    Article  Google Scholar 

  33. Sharma, N., Sharma, V., & Bhatia, S. S. (2018). A novel hybrid fractal antenna for wireless applications. Progress in Electromagnetics Research M, 73, 25–35.

    Article  Google Scholar 

  34. Luo, Q., Pereira, J. R., & Salgado, H. M. (2009). Fractal monopole antenna for WLAN USB dongle. In Proc. IEEE Conf on Ant and Prop, Loughborough (pp. 245–247).

  35. Rao, Q., & Geyi, W. (2009). Compact multiband antenna for handheld devices. IEEE Transactions on Antennas and Propagation, 57(10), 3337–3339.

    Article  Google Scholar 

  36. Faruque, M. R. I., Hossain, M. I., & Islam, M. T. (2015). Low specific absorption rate microstrip patch antenna for cellular phone applications. IET Microwaves, Antennas & Propagation, 9(14), 1540–1546.

    Article  Google Scholar 

  37. Benyetho, T., Abdellaoui, L. E., Terhzaz, H., Bennis, H., Ababssi, N., Tajmouati, A., Tribak, A., & Latrach, M. (2015). Design of a novel fractal multiband planar antenna with a CPW-fed. International Science Index, Electronic and Communication Engineering, 9(1), 12–15.

    Google Scholar 

  38. Rahimi, M., Kashtkar, A., & Zarrabi, F. B. (2015). Design of compact patch antenna based on zeroth order resonator for wireless and GSM applications with dual polarization. AEU-International Journal of Electronics and Communication, 69, 163–168.

    Article  Google Scholar 

  39. Joshi, M. P., Josh, J. G., & Pattnaik, S. S. (2020). Stub loaded rectangular ring shaped tri-band monopole antenna for wireless applications. International Journal of Advances in Microwave Technology, 5(2), 227–233.

    Article  Google Scholar 

  40. Sediq, H. T., & Mohammadi, B. (2021). A novel eye-shaped monopole antenna for dual band and wideband communication applications. Wireless Personal Communications, 117(3), 2639–2639.

    Article  Google Scholar 

  41. Kaur, N., & Sivia, J. S. (2021). Artificial neural network based metasurface inspired planar frequency reconfigurable antenna for wireless applications. International Journal of RF and Microwave Computer-Aided Engineering, 31(9), e22793.

    Article  Google Scholar 

  42. Kaur, N., Singh, J., & Kumar, M. (2020). Hexagonal ring shaped dual band antenna using staircase fractal geometry for wireless applications. Wireless Personal Communications, 113, 2067–2078.

    Article  Google Scholar 

  43. Kaur, M., & Sivia, J. S. (2020). ANN and FA based design of hybrid fractal antenna for ISM band applications. Progress in Electromagnetics Research C, 98, 127–140.

    Article  Google Scholar 

  44. Sran, S. S., & Sivia, J. S. (2020). ANN and IFS based wearable hybrid fractal antenna with DGS for S, C and X band application. AEU-International Journal of Electronics and Communications, 127, 153425.

    Google Scholar 

  45. Kaur, M., & Sivia, J. S. (2019). Minkowski, Giuseppe Peano and Koch curves based design of compact hybrid fractal antenna for biomedical applications using ANN and PSO. AEU-International Journal of Electronics and Communications, 99, 14–24.

    Google Scholar 

  46. Jindal, S., Sivia, J. S., & Bindra, H. S. (2020). Defected ground based fractal antenna for S and C band applications. Wireless Personal Communications, 110(1), 109–124.

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navjot Kaur.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors have no conflicts of interest to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, N., Sivia, J.S. & Kumar, M. A Design of Planar Monopole Antenna for Wireless Applications. Wireless Pers Commun 125, 2201–2218 (2022). https://doi.org/10.1007/s11277-022-09652-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09652-8

Keywords

Navigation