Skip to main content
Log in

Predicting Epileptic Seizures from EEG Spectral Band Features Using Convolutional Neural Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Epilepsy, a globally growing chronic nervous disorder, affects the lives of millions of patients annually through the abrupt occurrence of recurrent seizures. It could result in serious injuries or the death of patients in various accidents. Thus, the automatic prediction of epileptic seizures is essential for alerting the patients well before its actual onset, thereby increasing their chances of being safe. In the present times, internet of things assisted technologies have started exploring the potential of cloud as well as fog computing services for providing solutions to such nervous disorders using deep learning. The present paper also proposes a convolutional neural network-based automatic seizure prediction model in a cloud-fog integrated scenario. This model utilizes EEG segments of shorter time durations, which are characterized by discrete spectral features, such as spectral power and mean amplitude spectrum. These features are extracted from five spectral sub-bands of 23-channel EEG signal recordings, including delta, theta, alpha, beta and gamma sub-bands. The performance evaluation through various simulations reveals the efficiency of the proposed model for seizure prediction using EEG segment duration of 30 s. In conclusion, the analysis of simulation results, as well as performance comparison with other contemporary methods evidently disclose that the proposed EEG spectral band features based convolutional neural network approach is a competent method for accurate epileptic seizure prediction in real-time with an average accuracy of 97.4%, average sensitivity of 98%, average specificity of 96.6% and average false discovery rate of 2.7% only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The authors declare that they have used publicly available ‘CHB-MIT Scalp EEG Database’ for present work, which is available online at https://physionet.org/ web portal.

References

  1. Focus on Epilepsy Reearch: National Institute of Neurological Disorders and Stroke. (2022). https://www.ninds.nih.gov/Current-Research/Focus-Research/Focus-Epilepsy. Accessed: 2022-02-20.

  2. Epilepsy: World Health Organization. (2022). https://www.who.int/mentalhealth/. Accessed: 2022-02-21.

  3. Singh, K., & Malhotra, J. (2019). IoT and cloud computing based automatic epileptic seizure detection using HOS features based random forest classification. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-019-01613-7

    Article  Google Scholar 

  4. Freestone, D. R., Karoly, P. J., & Cook, M. J. (2017). A forward-looking review of seizure prediction. Current Opinion in Neurology, 30(2), 167–173.

    Article  Google Scholar 

  5. Litt, B., Esteller, R., Echauz, J., D’Alessandro, M., Shor, R., Henry, T., Pennell, P., Epstein, C., Bakay, R., Dichter, M., & Vachtsevanos, G. (2001). Epileptic seizures may begin hours in advance of clinical onset: A report of five patients. Neuron, 30(1), 51–64. https://doi.org/10.1016/S0896-6273(01)00262-8

    Article  Google Scholar 

  6. Kuhlmann, L., Lehnertz, K., Richardson, M. P., Schelter, B., & Zaveri, H. P. (2018). Seizure prediction–Ready for a new era. Nature Reviews Neurology, p. 1.

  7. Ullah, I., Hussain, M., Aboalsamh, H., et al. (2018). An automated system for epilepsy detection using EEG brain signals based on deep learning approach. Expert Systems with Applications, 107, 61–71.

    Article  Google Scholar 

  8. Acharya, U. R., Hagiwara, Y., & Adeli, H. (2018). Automated seizure prediction. Epilepsy and Behavior, 88, 251–261.

    Article  Google Scholar 

  9. Tsai, J.-C., Leu, J.-S., Prakosa, S. W., Hsiao, L.-C., Huang, P.-C., Yang, S.-Y., & Huang, Y.-T. (2021). Design and implementation of an internet of healthcare things system for respiratory diseases. Wireless Personal Communications, 117(2), 337–353.

    Article  Google Scholar 

  10. Kadhim, K. T., Alsahlany, A. M., Wadi, S. M., & Kadhum, H. T. (2020). An overview of patient’s health status monitoring system based on internet of things (IoT). Wireless Personal Communications, 114(3), 2235–2262.

    Article  Google Scholar 

  11. Veena, S., & Aravindhar, D. J. (2021). Remote monitoring system for the detection of prenatal risk in a pregnant woman. Wireless Personal Communications, 119(2), 1051–1064.

    Article  Google Scholar 

  12. Yong, B., Xu, Z., Wang, X., Cheng, L., Li, X., Wu, X., & Zhou, Q. (2018). IoT-based intelligent fitness system. Journal of Parallel and Distributed Computing, 118, 14–21. https://doi.org/10.1016/j.jpdc.2017.05.006

    Article  Google Scholar 

  13. Sujaya, B., & Bhaskar, R. S. (2021). A modelling of context-aware elderly healthcare eco-system-(CA-EHS) using signal analysis and machine learning approach. Wireless Personal Communications, 119(3), 2501–2516.

    Article  Google Scholar 

  14. Kim, J., Heetae, J., Kim, J. T., Pan, H.-J., & park, R. . C. (2019). Big-data based real-time interactive growth management system in wireless communications. Wireless Personal Communications, 105, 655–671. https://doi.org/10.1007/s11277-018-5978-9

    Article  Google Scholar 

  15. Singh, G., Kaur, M., & Singh, B. (2021). Detection of epileptic seizure EEG signal using multiscale entropies and complete ensemble empirical mode decomposition. Wireless Personal Communications, 116(1), 845–864.

    Article  Google Scholar 

  16. Singh, K., Singh, S., & Malhotra, J. (2021). Spectral features based convolutional neural network for accurate and prompt identification of schizophrenic patients. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 235(2), 167–184.

    Article  Google Scholar 

  17. Desai, R., Porob, P., Rebelo, P., Edla, D. R., & Bablani, A. (2020). Eeg data classification for mental state analysis using wavelet packet transform and gaussian process classifier. Wireless Personal Communications, 115(3), 2149–2169.

    Article  Google Scholar 

  18. Abbasi, H., Rasouli Kenari, A., & Shamsi, M. (2021). A model for identifying the behavior of Alzheimer’s disease patients in smart homes. Wireless Personal Communications, pp. 1–21.

  19. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436.

    Article  Google Scholar 

  20. Faust, O., Hagiwara, Y., Hong, T. J., Lih, O. S., & Acharya, U. R. (2018). Deep learning for healthcare applications based on physiological signals: A review. Computer Methods and Programs in Biomedicine, 161, 1–13.

    Article  Google Scholar 

  21. Shoeb, A. (2009). Application of Machine Learning to Epileptic Seizure Onset Detection and Treatment. Master’s thesis, Massachusetts Institute of Technology.

  22. Ouyang, C.-S., Chen, B.-J., Cai, Z.-E., Lin, L.-C., Wu, R.-C., Chiang, C.-T., & Yang, R.-C. (2019). Feature Extraction of EEG Signals for Epileptic Seizure Prediction. In: Y. Zhao, T.-Y. Wu, T.-H. Chang, J.-S. Pan, & L. C. Jain, editors, Advances in Smart Vehicular Technology, Transportation, Communication and Applications, pp. 298–303. Cham: Springer International Publishing. ISBN 978-3-030-04585-2.

  23. Tsiouris, K. M., Pezoulas, V. C., Koutsouris, D. D., Zervakis, M., & Fotiadis, D. I. (2017). Discrimination of preictal and interictal brain states from long-term EEG data. In: 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS), pp. 318–323. ISSN 2372-9198. https://doi.org/10.1109/CBMS.2017.33

  24. Usman, S. M., Usman, M., & Fong, S. (2017). Epileptic seizures prediction using machine learning methods. Computational and Mathematical Methods in Medicine. https://doi.org/10.1155/2017/9074759

    Article  MathSciNet  Google Scholar 

  25. Cui, S., Duan, L., Qiao, Y., & Xiao, Y. (2018). Learning EEG synchronization patterns for epileptic seizure prediction using bag-of-wave features. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-018-1000-3

    Article  Google Scholar 

  26. Kitano, L. A. S., Sousa, M. A. A., Santos, S. D., Pires, R., Thome-Souza, S., & Campo, A. B. (2018). Epileptic seizure prediction from EEG signals using unsupervised learning and a polling-based decision process. In: V. Kůrková, Y. Manolopoulos, B. Hammer, L. Iliadis, & I. Maglogiannis, (eds.), Artificial neural networks and machine learning – ICANN 2018, pp. 117–126. Cham: Springer International Publishing. ISBN 978-3-030-01421-6.

  27. Zhang, Q., Hu, Y., Potter, T., Li, R., Quach, M., & Zhang, Y. (2020). Establishing functional brain networks using a nonlinear partial directed coherence method to predict epileptic seizures. Journal of Neuroscience Methods, 329, 108447. https://doi.org/10.1016/j.jneumeth.2019.108447

    Article  Google Scholar 

  28. Hu, W., Cao, J., Lai, X., & Liu, J. (2019). Mean amplitude spectrum based epileptic state classification for seizure prediction using convolutional neural networks. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-019-01220-6

    Article  Google Scholar 

  29. Abdelhameed, A. & Bayoumi, M. (2018). Semi-supervised deep learning system for epileptic seizures onset prediction. In: 2018 17th IEEE international conference on machine learning and applications (ICMLA), pp. 1186–1191. IEEE.

  30. Duan, L., Hou, J., Qiao, Y., & Miao, J. (2019). Epileptic seizure prediction based on convolutional recurrent neural network with multi-timescale. In: Intelligence science and big data engineering. Big data and machine learning, pp. 139–150. Springer https://doi.org/10.1007/978-3-030-36204-1-11

  31. Truong, N. D., Nguyen, A. D., Kuhlmann, L., Bonyadi, M. R., Yang, J., & Kavehei, O. (2017). A generalised seizure prediction with convolutional neural networks for intracranial and scalp electroencephalogram data analysis. arXiv preprintarXiv:170701976.

  32. Truong, N. D., Nguyen, A. D., Kuhlmann, L., Bonyadi, M. R., Yang, J., Ippolito, S., & Kavehei, O. (2018). Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram. Neural Networks, 105, 104–111. https://doi.org/10.1016/j.neunet.2018.04.018

    Article  Google Scholar 

  33. Zhang, S., Chen, D., Ranjan, R., Ke, H., Tang, Y., & Zomaya, A. Y. (2021). A lightweight solution to epileptic seizure prediction based on EEG synchronization measurement. The Journal of Supercomputing, 77(4), 3914–3932.

    Article  Google Scholar 

  34. Usman, S. M., Khalid, S., & Bashir, Z. (2021). Epileptic seizure prediction using scalp electroencephalogram signals. Biocybernetics and Biomedical Engineering, 41(1), 211–220.

    Article  Google Scholar 

  35. Usman, S. M., Khalid, S., & Bashir, S. (2021). A deep learning based ensemble learning method for epileptic seizure prediction. Computers in Biology and Medicine, 136, 104710.

    Article  Google Scholar 

  36. Gao, Y., Chen, X., Liu, A., Liang, D., Wu, L., Qian, R., Xie, H., & Zhang, Y. (2022). Pediatric seizure prediction in scalp EEG using a multi-scale neural network with dilated convolutions. IEEE Journal of Translational Engineering in Health and Medicine.

  37. Lim, S., Yeo, M., & Yoon, G. (2019). Comparison between concentration and immersion based on EEG analysis. Sensors. https://doi.org/10.3390/s19071669

    Article  Google Scholar 

  38. Assi, E. B., Nguyen, D. K., Rihana, S., & Sawan, M. (2017). Towards accurate prediction of epileptic seizures: A review. Biomedical Signal Processing and Control, 34, 144–157. https://doi.org/10.1016/j.bspc.2017.02.001

    Article  Google Scholar 

  39. Kraemer, F. A., Braten, A. E., Tamkittikhun, N., & Palma, D. (2017). Fog computing in healthcare-a review and discussion. IEEE Access, 5, 9206–9222.

    Article  Google Scholar 

  40. PhysioBank, PhysioToolkit and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. (2022). https://physionet.org/content/chbmit/1.0.0/. Accessed: 2022-02-15.

  41. Homan, R. W. (1988). The 10–20 electrode system and cerebral location. American Journal of EEG Technology, 28(4), 269–279.

    Article  Google Scholar 

  42. Upadhyay, R., Padhy, P., & Kankar, P. (2016). EEG artifact removal and noise suppression by Discrete Orthonormal S-Transform denoising. Computers and Electrical Engineering, 53, 125–142. https://doi.org/10.1016/j.compeleceng.2016.05.015

    Article  Google Scholar 

  43. Daud, S. S. & Sudirman, R. (2015). Butterworth bandpass and stationary wavelet transform filter comparison for electroencephalography signal. In: 2015 6th international conference on intelligent systems, modelling and simulation, pp. 123–126. https://doi.org/10.1109/ISMS.2015.29

  44. Challis, R., & Kitney, R. (1983). The design of digital filters for biomedical signal processing Part 3: The design of Butterworth and Chebychev filters. Journal of Biomedical Engineering, 5(2), 91–102. https://doi.org/10.1016/0141-5425(83)90026-2

    Article  Google Scholar 

  45. Robertson, D. G. E., & Dowling, J. J. (2003). Design and responses of Butterworth and critically damped digital filters. Journal of Electromyography and Kinesiology, 13(6), 569–573.

    Article  Google Scholar 

  46. Kannathal, N., Acharya, U. R., Lim, C., & Sadasivan, P. (2005). Characterization of EEG-A comparative study. Computer Methods and Programs in Biomedicine, 80(1), 17–23. https://doi.org/10.1016/j.cmpb.2005.06.005

    Article  Google Scholar 

  47. Subha, D. P., Joseph, P. K., Acharya, R., & Lim, C. M. (2010). EEG signal analysis: a survey. Journal of Medical Systems, 34(2), 195–212.

    Article  Google Scholar 

  48. Barlow, J. (1985). Methods of analysis of nonstationary EEGs, with emphasis on segmentation techniques: A comparative review. Journal of Clinical Neurophysiology: Official Publication of the American Electroencephalographic Society, 2(3), 267–304. https://doi.org/10.1097/00004691-198507000-00005

    Article  Google Scholar 

  49. Sareen, S., Sood, S. K., & Gupta, S. K. (2016). An automatic prediction of epileptic seizures using cloud computing and wireless sensor networks. Journal of Medical Systems, 40(11), 1–18. https://doi.org/10.1007/s10916-016-0579-1

    Article  Google Scholar 

  50. Newson, J. J., & Thiagarajan, T. C. (2019). EEG frequency bands in psychiatric disorders: A review of resting state studies. Frontiers in Human Neuroscience, 12, 521. https://doi.org/10.3389/fnhum.2018.00521

    Article  Google Scholar 

  51. Tsipouras, M. G. (2019). Spectral information of EEG signals with respect to epilepsy classification. EURASIP Journal on Advances in Signal Processing, 2019(1), 10. https://doi.org/10.1186/s13634-019-0606-8

    Article  Google Scholar 

  52. Moretti, D. V., Babiloni, C., Binetti, G., Cassetta, E., Forno, G. D., Ferreric, F., Ferri, R., Lanuzza, B., Miniussi, C., Nobili, F., Rodriguez, G., Salinari, S., & Rossini, P. M. (2004). Individual analysis of EEG frequency and band power in mild Alzheimer’s disease. Clinical Neurophysiology, 115(2), 299–308. https://doi.org/10.1016/S1388-2457(03)00345-6

    Article  Google Scholar 

  53. Andrews, J. R., & Arthur, M. G. (1977). Spectrum amplitude: definition, generation, and measurement (Vol. 699). National Bureau of Standards, Institute for Basic Standards: Dept. of Commerce.

  54. O’Shea, K. & Nash, R. (2015). An introduction to convolutional neural networks. arXiv preprintarXiv:151108458.

  55. Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: An overview and application in radiology. Insights into Imaging, 9(4), 611–629. https://doi.org/10.1007/s13244-018-0639-9

    Article  Google Scholar 

  56. Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., & Adeli, H. (2018). Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Computers in Biology and Medicine, 100, 270–278. https://doi.org/10.1016/j.compbiomed.2017.09.017

    Article  Google Scholar 

  57. Khan, N. S., & Ghani, M. S. (2021). A survey of deep learning based models for human activity recognition. Wireless Personal Communications, 120(2), 1593–1635.

    Article  Google Scholar 

  58. Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a convolutional neural network. In: 2017 International conference on engineering and technology (ICET), pp. 1–6. https://doi.org/10.1109/ICEngTechnol.2017.8308186

  59. Tieleman, T. & Hinton, G. (2014). RMSprop gradient optimization. http://www.cstorontoedu/tijmen/csc321/slides/lecture_slides_lec6pdf.

  60. Zhang, Z. & Sabuncu, M. R. (2018). Generalized cross entropy loss for training deep neural networks with noisy labels. CoRR, arXiv:1805.07836.

  61. Baratloo, A., Hosseini, M., Negida, A., & El Ashal, G. (2015). Part 1: Simple definition and calculation of accuracy, sensitivity and specificity. Emergency, 3(2), 48–49.

    Google Scholar 

  62. Powers, D. M. (2011). Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. Journal of Machine Learning Technologies, 2(1), 37–63.

    MathSciNet  Google Scholar 

  63. Benjamini, Y. (2010). Discovering the false discovery rate. Journal of the Royal Statistical Society: series B (statistical methodology), 72(4), 405–416.

    Article  MathSciNet  Google Scholar 

  64. Li, J., & Wang, Z. J. (2009). Controlling the false discovery rate of the association/causality structure learned with the PC algorithm. Journal of Machine Learning Research, 10, 475–514.

    Google Scholar 

Download references

Acknowledgements

The authors of this research paper are highly thankful to the Department of Electronics Technology, Guru Nanak Dev University Amritsar, Punjab, India for providing research facilities to carry out this research work. Also, the authors would like to thank the reviewers in advance for their valuable comments and suggestions.

Funding

The authors declare that they have not received any funding from any organization to carry-out the present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldeep Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K., Malhotra, J. Predicting Epileptic Seizures from EEG Spectral Band Features Using Convolutional Neural Network. Wireless Pers Commun 125, 2667–2684 (2022). https://doi.org/10.1007/s11277-022-09678-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09678-y

Keywords

Navigation