Skip to main content
Log in

A High-Order Temperature-Compensated Subthreshold Voltage Reference Using Channel Length Modulation Compensation Technique

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The paper presents a novel high-order temperature-compensated subthreshold voltage reference that utilizes temperature characteristics of the gate-to-source voltage of subthreshold MOS transistor. The proposed high-order temperature-compensated voltage reference has been designed using two CMOS voltage references and a current subtraction circuit to achieve a low temperature coefficient over a wide temperature range. The proposed circuit offers an output reference voltage of 250.8 mV, line sensitivity of 0.0674%/V and temperature coefficient of 37.4 ppm/°C for the temperature range varying from − 20 \(\mathrm{^\circ{\rm C} }\) to 140 °C at nominal conditions. The power supply rejection ratio is obtained as − 46.02 dB at a frequency of 100 Hz and − 41.91 dB at a frequency of 1 MHz. The proposed circuit shows an output noise of 1.86 \(\mathrm{\mu V}/\surd \mathrm{Hz}\) at 100 Hz and 259.72 \(\mathrm{nV}/\surd \mathrm{Hz}\) at 1 MHz. The proposed circuit has been designed in BSIM3V3 180 nm CMOS technology using Cadence tool. The corner analysis of the proposed circuit has also been performed to show its performance in extreme conditions. The proposed circuit occupies a small chip area of 51 \(\upmu\)m × 75.3 \(\upmu\)m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Ueno, K., Hirose, T., Asai, T., & Amemiya, Y. (2010). A 1-mW 600-ppm/°C current reference circuit consisting of subthreshold CMOS circuits. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(9), 681–685.

    Google Scholar 

  2. Fayomi, C. J. B., Wirth, G. I., Achigui, H. F., & Matsuzawa, A. (2010). Sub-1-V CMOS bandgap reference design techniques: A survey. Analog Integrated Circuits Signal Process, 62(2), 141–157.

    Article  Google Scholar 

  3. Thakur, A., Pandey, R., & Rai, S. K. (2021). A low supply voltage, low line sensitivity, and high PSRR subthreshold CMOS voltage reference. Journal of Circuits, Systems, and Computers, 30, 2150227.

    Article  Google Scholar 

  4. Basyurt, P. B., Bonizzoni, E., Aksin, D. Y., & Maloberti, F. (2015). Voltage reference architectures for low-supply-voltage low-power applications. Microelectronics Journal, 46(11), 1012–1019.

    Article  Google Scholar 

  5. Souliotis, G., Plessas, F., & Vlassis, S. (2018). A high accuracy voltage reference generator. Microelectronics Journal, 75, 61–67.

    Article  Google Scholar 

  6. Nagulapalli, R., Hayatleh, K., Barker, S., Tammam, A. A., Georgiou, P., & Lidgey, F. J. (2019). A 055 V bandgap reference with a 59 ppm/°C temperature coefficient. Journal of Circuits, Systems, and Computers, 28(7):1–12 (19501202)

  7. Tsitouras, A., & Sotiriadis, P. P. (2019). Design of a sub-1V CMOS reference voltage generator. Microelectronics Journal, 91, 92–99.

    Article  Google Scholar 

  8. Koh, S. K., & Lee L., (2014). Low power CMOS bandgap reference circuit. IEEE Student Conference on Research and Development, Batu Ferringhi, 1–5.

  9. Sanborn, K., Ma, D., & Ivanov, V. (2007). A sub-1-V low-noise bandgap voltage reference. IEEE Journal of Solid-State Circuits, 42(11), 2466–2481.

    Article  Google Scholar 

  10. Luo, H., Han, Y., Cheung, R. C. C., Liang, G., & Zhu, D. (2012). Subthreshold CMOS voltage reference circuit with body bias compensation for process variation. IET Circuits, Devices & Systems, 6(3), 198–203.

    Article  Google Scholar 

  11. Wang, L., Zhan, C., Tang, J., et al. (2017). Analysis and design of a current-mode bandgap reference with high power supply ripple rejection. Microelectronics Journal, 68, 7–13.

    Article  Google Scholar 

  12. Song, B. S., & Gray, P. R. (1983). A precision curvature-compensated CMOS bandgap reference. IEEE Journal of Solid-State Circuits, 18(6), 634–643.

    Article  Google Scholar 

  13. Zhou, Z. K., Oua, X. C., Shi, Y., Zhu, P. S., Ma, Y. Q., Qiu, S., et al. (2012). A 3.2 ppm/°C curvature-compensated bandgap reference with wide supply voltage range. Microelectronics Journal, 43(11), 863–868.

    Article  Google Scholar 

  14. Shi, Y., Li, S., Cao, J., Zhou, Z., & Ling, W. (2020). A 180 nm self-biased bandgap reference with high PSRR enhancement. Nanoscale Research Letters, 15, 1254.

    Google Scholar 

  15. Jiang, Y., & Lee, E. K. F. (2000). Design of low-voltage bandgap reference using transimpedance amplifier. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 47(6), 552–555.

    Article  Google Scholar 

  16. Dai, Y., Comer, D. T., Comer, D. J., & Petrie, C. S. (2004). Threshold voltage based CMOS voltage reference. IEEE Proceedings of Circuits, Devices & Systems, 151(1), 58–62.

    Article  Google Scholar 

  17. Song, H.-J., & Kim, C. K. (1993). A temperature-stabilized SOI voltage reference based on threshold voltage difference between enhancement and depletion NMOSFET’s. IEEE Journal of Solid-State Circuits, 28(6), 671–677.

    Article  Google Scholar 

  18. Magnelli, L., Crupi, F., Corsonello, P., Pace, C., & Iannaccone, G. (2011). A 2.6 nW, 0.45 V temperature-compensated subthreshold CMOS voltage reference. IEEE Journal of Solid-State Circuits, 46(2), 465–474.

    Article  Google Scholar 

  19. Huang, P. H., Lin, H., & Lin, Y. T. (2006). A simple subthreshold CMOS voltage reference circuit with channel-length modulation compensation. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(9), 882–885.

    Article  Google Scholar 

  20. Giustolisi, G., Palumbo, G., Criscione, M., & Cutrì, F. (2003). A low-voltage low-power voltage reference based on subthreshold MOSFETs. IEEE Journal of Solid-State Circuits, 38(1), 151–154.

    Article  Google Scholar 

  21. Albano, D., Crupi, F., Cucchi, F., & Iannaccone, G. (2013). A pico-power temperature-compensated, subthreshold CMOS voltage reference. Int J. Circ Theory Appl., 46, 1306–1318.

    Google Scholar 

  22. Mohammed, M., Abugharbieha, K., Abdelfattah, M., & Kawar, S. (2016). Design methodology for MOSFET based voltage reference circuit implemented in 28 nm CMOS technology. AEU- International Journal of Electronics and Communications, 70(5), 568–577.

    Article  Google Scholar 

  23. Parisia, A., Finocchiarob, A., & Palmisano, G. (2017). An accurate 1-V threshold voltage reference for ultra-low power applications. Microelectronics Journal, 63, 155–159.

    Article  Google Scholar 

  24. Liang, Y., & Zhu, Z. (2018). A 42 ppm/°C 07 V 4.7 nW low-complexity all-MOSFET sub-threshold voltage reference. Journal of Circuits, Systems, and Computers, 27(7), 1850105.

    Article  MathSciNet  Google Scholar 

  25. Wang, L., Zhan, C., Tang, J., & Li, G. (2018). An amplifier offset-insensitive and high PSRR subthreshold CMOS voltage reference. Int J. Circ Theory Appl., 46(2), 259–271.

    Article  Google Scholar 

  26. Olivera, F., & Petraglia, A. (2020). Adjustable output CMOS voltage reference design. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(10), 1690–1694.

    Google Scholar 

  27. Rincon-Mora, G. A. (2002). Voltage References: From Diodes to Precision High-Order Bandgap Circuits. Wiley-IEEE Press.

    Google Scholar 

  28. Razavi, B. (2002). Design of Analog CMOS Integrated Circuits. McGraw-Hill Education.

    Google Scholar 

  29. Oliveira, A. C., Cordova, D., Klimach, H., & Bampi, S. (2017). Picowatt, 0.45–0.6 V self-biased subthreshold CMOS voltage reference. IEEE Transactions on Circuits and Systems I, 64(12), 3036–3045.

    Article  Google Scholar 

  30. Oliveira, A. C., Cordova, D., Bampi, S., & Klimach, H. (2018). A 0.12–0.4 V, versatile 3-transistor CMOS voltage reference for ultra-low power systems. IEEE Transactions on Circuits and Systems I, 65, 3790–3799.

    Article  Google Scholar 

  31. Yousefi, S., & Jalali, M. (2016). A high-PSRR low-power CMOS voltage reference based on weighted VGS difference. AEU—International Journal of Electronics and Communications, 70(1), 50–57.

    Google Scholar 

  32. Liang, C., Chung, C., & Lin, H. (2010). A low-voltage band-gap reference circuit with second-order analyses. International Journal of Circuit Theory and Applications, 39(12), 1247–1256.

    Article  Google Scholar 

  33. Osaki, Y., Hirose, T., Kuroki, N., & Numa, M. (2013). 1.2-V supply, 100-nW, 1.09-V bandgap and 0.7-V supply, 52.5-nW, 0.55-V subbandgap reference circuits for nanowatt CMOS LSIs. IEEE Journal of Solid-State Circuits, 48(6), 1530–1538.

    Article  Google Scholar 

  34. Duan, Q., & Roh, J. (2015). A 1.2-V 4.2 ppm/°C high-order curvature-compensated CMOS bandgap reference. IEEE Transactions on Circuits and Systems I, 62(3), 662–670.

    Article  MathSciNet  Google Scholar 

  35. Lee, K. K., Lande, T. S., & Häfliger, P. T. (2015). A sub-μW bandgap reference circuit with an inherent curvature-compensation property. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(1), 1–9.

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishikesh Pandey.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, A., Pandey, R. & Rai, S.K. A High-Order Temperature-Compensated Subthreshold Voltage Reference Using Channel Length Modulation Compensation Technique. Wireless Pers Commun 126, 263–284 (2022). https://doi.org/10.1007/s11277-022-09744-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09744-5

Keywords