Skip to main content
Log in

Performance Analysis of Switch and Stay Combining Diversity for Beaulieu-Xie Fading Model

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Beaulieu-Xie (BX) fading model is adequate for Femtocell and high-speed railway applications. In this paper, the performance evaluation of dual branch switch and stay combining diversity system operating over independent identically distributed BX fading channels are presented. In this context, the expressions of statistical parameters such as probability density function, cumulative distribution function and moment generating function are derived. After that, the expressions for moments, average output signal to noise ratio, outage probability, and average bit error rate for basic binary modulation schemes are derived. The expressions of channel capacity under different power and rate adaptive methods are also derived. Further, the optimal switching threshold values are calculated for different performance parameters. Moreover, the analytical results and existing results available in previous literature are compared. The Monte Carlo simulation results are carried out to verify derived expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Kumar, S. (2015). Wireless communication: The fundamental and advanced concepts. River Publishers.

    Google Scholar 

  2. Simon, M. K., & Alouini, M. S. (2005). Digital communication over fading channels (2nd ed.). John Wiley & Sons.

    Google Scholar 

  3. Zhao, J., Fan, P., Beaulieu, N.C., & Lei, X. (2018). Switching rates of selection diversity and switch-and-stay diversity on mixed high-speed train channels. In Proceeding IEEE workshop on high mobility wireless communications (HMWC), pp. 51–55, Xian, China.

  4. He, R., Zhong, Z., Ai, B., Ding, J., Yang, Y., & Molisch, A. F. (2013). Short-term fading behavior in high-speed railway cutting scenario: Measurements, analysis, and statistical models. IEEE Transactions on Antennas and Propagation, 61(4), 2209–2222.

    Article  Google Scholar 

  5. Guan, K., Zhong, Z., Ai, B., & Kurner, T. (2014). Propagation measurements and modeling of crossing bridges on high-speed railway at 930 MHz. IEEE Transactions on Vehicular Technology, 63(2), 502–517.

    Article  Google Scholar 

  6. He, R., Zhong, Z., Ai, B., Wang, G., Ding, J., & Molisch, A. F. (2013). Measurements and analysis of propagation channels in high-speed railway viaducts. IEEE Transactions Wireless Communications, 12(2), 794–805.

    Article  Google Scholar 

  7. Beaulieu, N. C., & Jiandong, X. (2015). A novel fading model for channels with multiple dominant specular components. IEEE Wireless Communication Letters, 4(1), 54–57.

    Article  Google Scholar 

  8. Abu-Dayya, A. A., & Beaulieu, N. C. (1994). Analysis of switched diversity systems on generalized-fading channels. IEEE Transactions on Communications, 42(11), 2959–2966.

    Article  Google Scholar 

  9. Abu-Dayya, A. A., & Beaulieu, N. C. (1994). Switched diversity on microcellular Ricean channels. IEEE Transactions on Vehicular Technology, 43(4), 970–976.

    Article  Google Scholar 

  10. Ko, Y. C., Alouini, M. S., & Simon, M. K. (2000). Analysis and optimization of switched diversity systems. IEEE Transactions on Vehicular Technology, 49(5), 1813–1831.

    Article  Google Scholar 

  11. Sagias, N. C., Zogas, D. A., Karagiannidis, G. K., & Tombras, G. S. (2003). Performance analysis of switched diversity receivers in Weibull fading. Electronics Letters, 39(20), 1472–1474.

    Article  Google Scholar 

  12. Sasan, H., & Beaulieu, N. C. (2005). Postdetection switch-and-stay diversity in Rician fading. In Proceeding IEEE wireless communications and networking conference (WCNC), vol. 2, pp. 872–876, New Orleans, LA, USA.

  13. Sagias, N. C., & Mathiopoulos, T. (2005). Switched diversity receivers over generalized gamma fading channels. IEEE Communication Letters, 9(10), 871–873.

    Article  Google Scholar 

  14. Khatalin, S., & Fonseka, J. P. (2006). Capacity of correlated Nakagami-m fading channels with diversity combining techniques. IEEE Transactions on Vehicular Technology, 55(1), 142–150.

    Article  Google Scholar 

  15. Bithas, P. S., Mathiopoulos, P. T., & Kotsopoulos, S. A. (2007). Diversity reception over generalized-K fading channels. IEEE Transactions on Wireless Communication, 6(12), 4238–4243.

    Article  Google Scholar 

  16. Khatalin, S., & Fonseka, J. P. (2007). Channel capacity of dual-branch diversity systems over correlated Nakagami-m fading with channel inversion and fixed rate transmission scheme. IET Communications, 1(6), 1161–1169.

    Article  MathSciNet  Google Scholar 

  17. Bandjur, D. V., Stefanovic, M. C., & Bandjur, M. V. (2008). Performance analysis of SSC diversity receiver over correlated Ricean fading channels in presence of co-channel interference. Electronics Letters, 44(9), 587–587.

    Article  Google Scholar 

  18. Khatalin, S. (2015). Performance analysis of switch and stay combining diversity system over κ-µ fading channels. AEU-International Journal of Electronics and Communication, 69, 475–486.

    Google Scholar 

  19. Khatalin, S. (2015). On the channel capacity of SSC diversity in η-μ and κ-µ fading environments. AEU-International Journal of Electronics and Communication, 69, 1683–1699.

    Google Scholar 

  20. Khatalin, S. (2016). On the performance analysis of SSC diversity system over η–μ fading channels. International Journal of Electronics, 103(6), 960–974.

    Article  Google Scholar 

  21. Kansal, V., & Singh, S. (2017). Analysis of effective capacity over Beaulieu-Xie fading model. In Proceedings IEEE international women in engineering conference on electrical & computer engineering, pp. 207–210, Dehradun, India.

  22. Olutayo, A., Ma, H., Cheng, J., & Holzman, J. F. (2017). Level crossing rate and average fade duration for the Beaulieu-Xie fading model. IEEE Wireless Communication Letters, 6(3), 326–329.

    Article  Google Scholar 

  23. Olutayo, A., Cheng, J., & Holzman, J. F. (2017). Asymptotically tight performance bounds for selection diversity over Beaulieu-Xie fading channels with arbitrary correlation. In Proceedings IEEE international conference on communications (ICC), pp. 1–6, Paris, France.

  24. Olutayo, A., Cheng, J., & Holzman, J. F. (2017). Asymptotically tight performance bounds for equal-gain combining over a new correlated fading channel. In Proceeding IEEE Canadian workshop on information theory (CWIT), pp. 1–5, Quebec City, Canada.

  25. Kansal, V., & Singh, S. (2018). Analysis of average symbol error probability of MDPSK MFSK and MPSK in the Beaulieu-Xie Fading. In Proceeding IEEE international conference on wireless networks & embedded systems (WECON), pp. 11–14, Rajpura, India.

  26. Kaur, M., & Yadav, R. K. (2020). Performance analysis of Beaulieu-Xie fading channel with MRC diversity reception. Transactions on Emerging Telecommunication Technologies, 31(7), e3949.

    Article  Google Scholar 

  27. Kansal, V., & Singh, S. (2021). Capacity analysis of maximal ratio combining over Beaulieu-Xie fading. Annals of Telecommunications, 76, 43–50.

    Article  Google Scholar 

  28. Olutayo, A., Cheng, J., & Holzman, J. F. (2020). Performance bounds for diversity receptions over a new fading model with arbitrary branch correlation. EURASIP Journal on Wireless Communications and Networking, 2020(1), 1–26.

    Article  Google Scholar 

  29. Silva, H. S., Almeida, D. B., Queiroz, W. J., Fonseca, I. E., Oliveira, A. S., & Madeiro, F. (2020). Cascaded double Beaulieu-Xie fading channels. IEEE Communications Letters, 24(10), 2133–2136.

    Article  Google Scholar 

  30. Chauhan, P. S., Kumar, S., & Soni, S. K. (2020). On the physical layer security over Beaulieu-Xie fading channel. AEU-International Journal of Electronics and Communications, 113, 152040.

    Google Scholar 

  31. Devi, L. M., & Singh, A. D. (2021). Performance analysis of L-MRC receiver with estimation error over Beaulieu-Xie fading channels. AEU-International Journal of Electronics and Communications, 135, 153730.

    Google Scholar 

  32. Silva, H. S., Almeida, D. B., Queiroz, W. J., Fonseca, I. E., Oliveira, A. S., & Madeiro, F. (2021). On the BEP analysis of M-QAM in a frequency non-selective Beaulieu-Xie fading channels. In Proceeding IEEE European conference on antennas and propagation (EuCAP), pp. 1–5, Dusseldorf, Germany.

  33. Kansal, V., & Singh, S. (2021). Effective rate analysis of MISO over Beaulieu-Xie fading channel. AEU-International Journal of Electronics and Communications, 138, 153886.

    Google Scholar 

  34. Kansal, V., & Singh, S. (2021). Error performance of generalized M-ary QAM over the Beaulieu-Xie fading. Telecommunication Systems, 78, 163–168.

    Article  Google Scholar 

  35. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). Academic Press.

    MATH  Google Scholar 

  36. Prudnikov, A. P., Brychkov, Y. A., & Mariche, O. I. (1986). Integrals and series: special functions (Vol. 2). Gordon and Breach Science Publishers.

    Google Scholar 

  37. Geller, M., & Ng, E. W. (1969). A table of integrals of the error functions. Journal of Research of the National Bureau of Standards B, 73, 1–20.

    MathSciNet  MATH  Google Scholar 

  38. Brychkov, Y. A., Marichev, O. I., & Prudnikov, A. P. (1986). Integrals and series: more special functions (Vol. 3). Gordon and Breach Science Publishers.

    MATH  Google Scholar 

  39. Prudnikov, A. P., Brychkov, Y. A., & Mariche, O. I. (1986). Integrals and series: elementary functions (Vol. 1). Gordon and Breach Science Publishers.

    Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Shankar.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shankar, H., Kansal, A. Performance Analysis of Switch and Stay Combining Diversity for Beaulieu-Xie Fading Model. Wireless Pers Commun 126, 531–553 (2022). https://doi.org/10.1007/s11277-022-09757-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09757-0

Keywords

Navigation