Skip to main content

Advertisement

Log in

Compressive Sensing Node Localization Method Using Autonomous Underwater Vehicle Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Autonomous underwater vehicle networks is a significant resource for aquatic life maintenance and monitoring underwater pollution. It is necessary to study the underwater localization algorithms which self-localize themselves. The proposed work concentrates only on the range-free localization model with a goal is to use only very few sensing nodes in the network with low cost and high battery power to self-localize themselves. Few beacon nodes have been used to localize the sensor nodes in the definite position of the network. Compressive sensing theory based on hop count information for localizing the sensor nodes has also been used for localization. This research aims to collect the connectivity information of all the nodes in the network with compressive sensing theory and improve the localization accuracy. The analysis presents that the proposed method works well with location accuracy. Compressive Sensing Node Localization reduces cost and enhances sensors' energy efficiency compared to other underwater localization algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. Umamaheswari, S. (2021). Hybrid optimization model for energy efficient cloud assisted wireless sensor network. Wireless Personal Communications. https://doi.org/10.1007/s11277-020-08048-w

    Article  Google Scholar 

  2. Choudhary, M., & Goyal, N. (2022). Dynamic topology control algorithm for node deployment in mobile underwater wireless sensor networks. Concurrency and Computation: Practice and Experience. https://doi.org/10.1002/cpe.6942

    Article  Google Scholar 

  3. Nain, M., Goyal, N., Awasthi, L. K., & Malik, A. (2022). A range based node localization scheme with hybrid optimization for underwater wireless sensor network. International Journal of Communication Systems. https://doi.org/10.1002/dac.5147

    Article  Google Scholar 

  4. Rady, A., Shokair, M., El-Rabaie, E. S. M., & Sabor, N. (2021). Joint nodes and sink mobility based immune routing-clustering protocol for wireless sensor networks. Wireless Personal Communications. https://doi.org/10.1007/s11277-020-08066-8

    Article  Google Scholar 

  5. Arunkumar, J. R., Anusuya, R., Rajan, M. S., & Prabhu, M. R. (2020). Underwater wireless information transfer with compressive sensing for energy efficiency. Wireless Personal Communications, 113(2), 715–725. https://doi.org/10.1007/s11277-020-07249-7

    Article  Google Scholar 

  6. Pacharaney, U. S., & Gupta, R. K. (2019). Clustering and compressive data gathering in wireless sensor network. Wireless Personal Communications, 109(2), 1311–1331. https://doi.org/10.1007/s11277-019-06614-5

    Article  Google Scholar 

  7. Alwan, N. A., & Hussain, Z. M. (2019). Compressive sensing with chaotic sequences: An application to localization in wireless sensor networks. Wireless Personal Communications, 105(3), 941–950. https://doi.org/10.1007/s11277-019-06129-z

    Article  Google Scholar 

  8. Randhawa, S., & Jain, S. (2017). Data aggregation in wireless sensor networks: Previous research, current status and future directions. Wireless Personal Communications, 97(3), 3355–3425. https://doi.org/10.1007/s11277-017-4674-5

    Article  Google Scholar 

  9. Irshad, M., Liu, W., Wang, L., & Khalil, M. U. R. (2019). Cogent machine learning algorithm for indoor and underwater localization using visible light spectrum. Wireless Personal Communications. https://doi.org/10.1007/s11277-019-06631-4

    Article  Google Scholar 

  10. Sahana, S., & Singh, K. (2020). Cluster based localization scheme with backup node in underwater wireless sensor network. Wireless Personal Communications, 110(4), 1693–1706. https://doi.org/10.1007/s11277-019-06807-y

    Article  Google Scholar 

  11. Beniwal, M., Singh, R. P., & Sangwan, A. (2016). A localization scheme for underwater sensor networks without time synchronization. Wireless Personal Communications, 88(3), 537–552. https://doi.org/10.1007/s11277-016-3175-2

    Article  Google Scholar 

  12. Goyal, N., Dave, M., & Verma, A. K. (2019). Protocol stack of underwater wireless sensor network: Classical approaches and new trends. Wireless Personal Communications, 104(3), 995–1022. https://doi.org/10.1007/s11277-018-6064-z

    Article  Google Scholar 

  13. Goyal, N., Dave, M., & Verma, A. K. (2016). Energy efficient architecture for intra and inter cluster communication for underwater wireless sensor networks. Wireless Personal Communications, 89(2), 687–707. https://doi.org/10.1007/s11277-016-3302-0

    Article  Google Scholar 

  14. Krishnaswamy, V., & Manvi, S. S. (2019). Fuzzy and PSO based clustering scheme in underwater acoustic sensor networks using energy and distance parameters. Wireless Personal Communications, 108(3), 1529–1546. https://doi.org/10.1007/s11277-019-06483-y

    Article  Google Scholar 

  15. Artemenko, O., & Mitschele-Thiel, A. (2013). Localization in wireless networks with post-improvement using estimation of distances between unknown nodes: Simulation and experimental evaluation. International Journal of Wireless Information Networks, 20, 268–280. https://doi.org/10.1007/s10776-013-0228-2

    Article  Google Scholar 

  16. Prashar, D., & Jyoti, K. (2019). Distance error correction-based hop localization algorithm for wireless sensor network. Wireless Personal Communications, 106(3), 1465–1488. https://doi.org/10.1007/s11277-019-06225-0

    Article  Google Scholar 

  17. Goyal, N., Dave, M., & Verma, A. K. (2020). SAPDA: Secure authentication with protected data aggregation scheme for improving QoS in scalable and survivable UWSNs. Wireless Personal Communications. https://doi.org/10.1007/s11277-020-07175-8

    Article  Google Scholar 

  18. Pandey, S., & Varma, S. (2016). A range based localization system in multihop wireless sensor networks: A distributed cooperative approach. Wireless Personal Communications, 86(2), 615–634. https://doi.org/10.1007/s11277-015-2948-3

    Article  Google Scholar 

  19. Sekar, K., Suganya Devi, K., & Srinivasan, P. (2021). Energy efficient data gathering using spatio-temporal compressive sensing for WSNs. Wireless Personal Communications, 117, 1279–1295. https://doi.org/10.1007/s11277-020-07922-x

    Article  Google Scholar 

  20. Lee, S., & Kim, K. (2012). Localization with a mobile beacon in underwater acoustic sensor networks. Sensors (Switzerland), 12(5), 5486–5501. https://doi.org/10.3390/s120505486

    Article  Google Scholar 

  21. Wang, J., Urriza, P., Han, Y., & Cabric, D. (2011). Weighted centroid localization algorithm: Theoretical analysis and distributed implementation. IEEE Transactions on wireless communications, 10(10), 3403–3413. https://doi.org/10.1109/TWC.2011.081611.102209

    Article  Google Scholar 

  22. Wang, J., Gao, Y., Yin, X., Li, F., & Kim, H. J. (2018). An enhanced PEGASIS algorithm with mobile sink support for wireless sensor networks. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2018/9472075

    Article  Google Scholar 

  23. Wang, P., Xue, F., Li, H., Cui, Z., Xie, L., & Chen, J. (2019). A multi-objective DV-Hop localization algorithm based on NSGA-II in internet of things. Mathematics, 7(2), 184. https://doi.org/10.3390/math7020184

    Article  Google Scholar 

  24. Dong, P., Qian, H., Wei, X., et al. (2013). A beacon-less geographic multipath routing protocol for ad hoc networks. Mobile Netw Appl, 18, 500–512. https://doi.org/10.1007/s11036-012-0427-6

    Article  Google Scholar 

  25. Wang, J., Gao, Y., Liu, W., Sangaiah, A. K., & Kim, H. J. (2019). Energy efficient routing algorithm with mobile sink support for wireless sensor networks. Sensors, 19(7), 1494. https://doi.org/10.3390/s19071494

    Article  Google Scholar 

  26. Wahid, A., Lee, S., Kim, D., & Lim, K. S. (2014). MRP: A localization-free multi-layered routing protocol for underwater wireless sensor networks. Wireless personal communications, 77(4), 2997–3012. https://doi.org/10.1007/s11277-014-1690-6

    Article  Google Scholar 

  27. Kumari, S., Mishra, P. K., & Anand, V. (2020). Integrated load balancing and void healing routing with cuckoo search optimization scheme for underwater wireless sensor networks. Wireless Personal Communications, 111, 1787–1803. https://doi.org/10.1007/s11277-019-06957-z

    Article  Google Scholar 

  28. Singh, A., & Nagaraju, A. (2020). Low latency and energy efficient routing-aware network coding-based data transmission in multi-hop and multi-sink WSN. Ad Hoc Networks, 107, 102182. https://doi.org/10.1016/j.adhoc.2020.102182

    Article  Google Scholar 

  29. Sohn, I., Lee, J. H., & Lee, S. H. (2016). Low-energy adaptive clustering hierarchy using affinity propagation for wireless sensor networks. IEEE Communications Letters, 20(3), 558–561. https://doi.org/10.1109/LCOMM.2016.2517017

    Article  Google Scholar 

  30. He, F. H., Yu, Z. J., & Liu, H. T. (2012). Multiple target localization via compressed sensing in wireless sensor networks. Dianzi Yu Xinxi Xuebao (Journal of Electronics and Information Technology), 34(3), 716–721.

    Google Scholar 

  31. Lin, Y., Tao, H., Tu, Y., & Liu, T. (2019). A node self-localization algorithm with a mobile anchor node in underwater acoustic sensor networks. IEEE Access, 7, 43773–43780. https://doi.org/10.1109/ACCESS.2019.2904725

    Article  Google Scholar 

  32. Han, G., Zhang, C., Liu, T., & Shu, L. (2016). MANCL: A multi-anchor nodes collaborative localization algorithm for underwater acoustic sensor networks. Wireless Communications and Mobile Computing, 16(6), 682–702. https://doi.org/10.1002/wcm.2561

    Article  Google Scholar 

  33. Fazel, F., Fazel, M., & Stojanovic, M. (2011). Random access compressed sensing for energy-efficient underwater sensor networks. IEEE Journal on Selected Areas in Communications, 29(8), 1660–1670. https://doi.org/10.1109/JSAC.2011.110915

    Article  Google Scholar 

  34. Yu, K., Hao, K., Li, C., Du, X., Wang, B., & Liu, Y. (2019, May). An improved TDoA localization algorithm based on AUV for underwater acoustic sensor networks. In International conference on artificial intelligence for communications and networks (pp. 419–434). Cham: Springer. https://doi.org/10.1007/978-3-030-22968-9_38.

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Sachin Kumar Gupta and Nitin Goyal conceived the idea, designed the experiments and analysed the data; Madhumitha Kulandaive, Arulanand Natarajan performed the experiments and conducted the analysis; Sathiyamoorthi Velayutham and Ashutosh Srivastava analysed the methods, interpreted the results and drew the conclusions; Suresh P proofread the paper. All the authors agree with the above contribution details.

Corresponding author

Correspondence to Nitin Goyal.

Ethics declarations

Conflicts of interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulandaivel, M., Natarajan, A., Velayutham, S. et al. Compressive Sensing Node Localization Method Using Autonomous Underwater Vehicle Network. Wireless Pers Commun 126, 2781–2799 (2022). https://doi.org/10.1007/s11277-022-09841-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09841-5

Keywords

Navigation