Skip to main content
Log in

DOA Estimation Based on Second-Order Difference Co-Array for Coprime Arrays

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper A different approach based on the reconstruction of the data covariance matrix is presented. In the presented approach, by vectorization of the reconstructed matrix, the covariance matrix is reconstructed in two steps. Hence an extensive network of virtual sensors is created, which is introduced as a second-order difference co-array. Then, by using the well-known spatial smoothing technique full-rank covariance matrix is obtained for DOA estimation algorithms. Therefore the MN sources can be detected using a physical array with M + N sensors. The degrees of freedom (DOF) of the second-order difference co-array are significantly increased as opposed to the physical array which provides only N − 1 degrees of freedom. As a result, for a certain number of array elements, in addition to the resolution improvement, the number of detectable targets is sharply increased. Simulation results verify the effectiveness of the proposed method and MUSIC-based or ESPRIT-based DOA estimators could be designed to perform DOA estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. H. L. V. 2002 Trees, Detection, Estimation, and Modulation Theory. Part IV., Optimum Array Processing, Wiley- Interscience.

  2. T. E. Tuncer and B. Friedlander, Classical and Modern Direction-of-Arrival Estimation, Academic Press, 2009.

  3. Bienvenu, G., & Kopp, L. (1983). Optimality of high resolution array processing using the eigensystem approach. IEEE Transactions on Acoustics, Speech, and Signal Processing, 31(5), 1235–1247.

    Article  Google Scholar 

  4. Brillinger, D. R. (1985). A maximum likelihood approach to frequency wavenumber analysis. IEEE Transactions on Acoustics, Speech, and Signal Processing, 33(4), 1076–1085.

    Article  Google Scholar 

  5. Kumaresan, R., & Tufts, D. W. (1983). Estimating the angles of arrival of multiple plane waves. IEEE Transactions on Aerospace and Electronic Systems, 19(1), 134–138.

    Article  Google Scholar 

  6. Roy, R., Paulraj, A., & Kailath, T. (1986). ESPRIT—A subspace rotation approach to estimation of parameters of cisoids in noise. IEEE Transactions on Acoustics, Speech, and Signal Processing, 34(5), 1340–1342.

    Article  Google Scholar 

  7. Schmidt, R. O. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 34(3), 276–280.

    Article  Google Scholar 

  8. Viberg, M., & Ottersten, B. (1991). Sensor array processing based on subspace fitting. IEEE Transactions on Acoustics, Speech, and Signal Processing, 39(5), 1110–1121.

    Article  Google Scholar 

  9. Burg, J. P. (1972). The relationship between maximum entropy spectra and maximum likelihood spectra. Geophys, 37(2), 375–376.

    Article  Google Scholar 

  10. Capon, J. (1969). High resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE, 57, 1408–1418.

    Article  Google Scholar 

  11. Kaveh, M., & Barabell, A. J. (1986). The statistical performance of the MUSIC and the minimum norm algorithms in resolving plane waves in noise. IEEE Transactions on Acoustics, Speech, and Signal Processing, 34(2), 331–341.

    Article  Google Scholar 

  12. Stoica, P., & Nehorai, A. (1989). MUSIC, maximum likelihood and Cramer Rao bound. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(12), 720–741.

    Article  MathSciNet  Google Scholar 

  13. Stoica, P., & Nehorai, A. (1990). MUSIC, maximum likelihood, and Cramer-Rao bound: Further results and comparisons. IEEE Transactions on Acoustics, Speech, and Signal Processing, 38(12), 2140–2150.

    Article  Google Scholar 

  14. Dogan, M. C., & Mendel, J. M. (1995). Applications of cumulants to array processing - Part I: Aperture extension and array calibration. IEEE Transactions on Signal Processing, 43(5), 1200–1216.

    Article  Google Scholar 

  15. Chevalier, P., Albera, L., Ferreol, A., & Comon, P. (2005). On the virtual array concept for higher order array processing. IEEE Transactions on Signal Processing, 53(4), 1254–1271.

    Article  MathSciNet  Google Scholar 

  16. Chevalier, P., & Ferreol, A. (1999). On the virtual array concept for the fourth-order direction finding problem. IEEE Transactions on Signal Processing, 47(9), 2592–2595.

    Article  Google Scholar 

  17. Cardoso, J.-F. (1990). Localisation et identification par la quadricovariance. Traitement du Signal, 7(5), 397–406.

    Google Scholar 

  18. Chiang, H. H., & Nikias, C. L. (1989). The ESPRIT algorithm with high order statistics (pp. 163–168). Proc. Workshop Higher Order Statistics.

    Google Scholar 

  19. Gönen, E., & Mendel, J. M. (1999). Applications of cumulants to array processing— Part VI: Polarization and direction of arrival estimation with minimally constrained arrays. IEEE Transactions on Signal Processing, 47(9), 2589–2592.

    Article  Google Scholar 

  20. Porat, B., & Friedlander, B. (1991). Direction finding algorithms based on higher order statistics. IEEE Transactions on Signal Processing, 39(9), 2016–2024.

    Article  Google Scholar 

  21. Shamsunder, S., & Giannakis, G. B. (1993). Modeling of non-Gaussian array data using cumulants: DOA estimation of more sources with less sensors. Signal Processing, 30(3), 279–297.

    Article  Google Scholar 

  22. Chevalier, P., Ferréol, A., & Albera, L. (2006). High-resolution direction finding from Higher order statistics: The 2q-MUSIC algorithm. IEEE Transactions on Signal Processing, 54(8), 2986–2997.

    Article  Google Scholar 

  23. Pal, P., & Vaidyanathan, P. P. (2012). Multiple level nested array: An efficient geometry for 2qth order cumulant based array processing. IEEE Transactions on Signal Processing, 60(3), 1253–1269.

    Article  MathSciNet  Google Scholar 

  24. Hoctor, R. T., & Kassam, S. A. (1990). The unifying role of the coarray in aperture synthesis for coherent and incoherent imaging. Proceedings of the IEEE, 78(4), 735–752.

    Article  Google Scholar 

  25. Moffet, A. (1968). Minimum-redundancy linear arrays. IEEE Transactions on Antennas and Propagation, 16(2), 172–175.

    Article  Google Scholar 

  26. Bloom, G. S., & Golomb, S. W. (1977). Application of numbered undirected graphs. Proceedings of the IEEE, 65(4), 562–570.

    Article  Google Scholar 

  27. Pal, P., & Vaidyanathan, P. P. (2010). Nested arrays: A novel approach to array processing with enhanced degrees of freedom. IEEE Transactions on Signal Processing, 58(8), 4167–4181.

    Article  MathSciNet  Google Scholar 

  28. Gupta, I. J., & Ksienski, A. A. (1983). Effect of mutual coupling on the performance of adaptive arrays. IEEE Transactions on Antennas and Propagation, AP-31(5), 785–791.

    Article  Google Scholar 

  29. Zhang, Y., Hirasawa, K., & Fujimoto, K. (1987). Signal bandwidth consideration of mutual coupling effects on adaptive array performance. IEEE Transactions on Antennas and Propagation, AP-35(3), 337–339.

    Article  Google Scholar 

  30. Chen, T., Shi, L., & Guo, L. (2019). Sparse DOA estimation algorithm based on fourth-order cumulants vector exploiting restricted non-uniform linear array. IEEE Access, 7, 9980–9988.

    Article  Google Scholar 

  31. Zhou, Y., Li, J., Nie, W., & Li, Y. (2021). The fourth-order difference co-array construction by expanding and shift nested array: Revisited and improved. Signal Processing, 188, 108198.

    Article  Google Scholar 

  32. Vaidyanathan, P. P., & Pal, P. (2011). Sparse sensing with co-prime samplers and arrays. IEEE Transactions on Signal Processing, 59(2), 573–586.

    Article  MathSciNet  Google Scholar 

  33. Qin, S., Zhang, Y. D., & Amin, M. G. (2015). Generalized Coprime Array Configurations for Direction-of-Arrival Estimation. IEEE Transactions on Signal Processing, 63(6), 1377–1390.

    Article  MathSciNet  Google Scholar 

  34. Tan, Z., Eldar, Y. C., & Nehorai, A. (2014). Direction of arrival estimation using Co-prime arrays: A super-resolution viewpoint. IEEE Transactions on Signal Processing, 62(21), 5565–5576.

    Article  MathSciNet  Google Scholar 

  35. Liu, K., & Zhang, Y. D. (2018). Coprime array-based DOA estimation in unknown nonuniform noise environment. Digital Signal Processing, 76, 66–74.

    Article  MathSciNet  Google Scholar 

  36. B. Liao, C. Guo, L. Huang, J. Wen, (2016) Matrix completion based direction-of-arrival estimation in nonuniform noise. In: Proceedings of 2016 IEEE International Conference on Digital Signal Processing (DSP), Beijing, China, pp. 66–69.

  37. Qin, Si., Zhang, Y. D., Amin, M. G., & Himed, B. (2017). DOA estimation exploiting a uniform linear array with multiple co-prime frequencies. Signal Processing, 130, 37–46.

    Article  Google Scholar 

  38. Mei, F., Xu, H., Cui, W., Ba, B., & Wang, Y. (2021). A transformed coprime array With reduced mutual coupling for DOA estimation of non-circular signals. IEEE Access, 9, 125984–125998.

    Article  Google Scholar 

  39. Lu, A., Guo, Y., Li, N., & Yang, S. (2020). Efficient gridless 2-D direction-of-arrival estimation for coprime array based on decoupled atomic norm minimization. IEEE Access, 8, 57786–57795.

    Article  Google Scholar 

  40. Chen, Z., Fan, C., & Huang, X. (2020). Interpolation-based direction-of-arrival estimation for coprime arrays via covariance matrix fitting. IEEE Access, 8, 149133–149141.

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariush Abbasi-Moghadam.

Ethics declarations

Conflicts of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifzadeh Lari, A., Abbasi-Moghadam, D. DOA Estimation Based on Second-Order Difference Co-Array for Coprime Arrays. Wireless Pers Commun 126, 3167–3194 (2022). https://doi.org/10.1007/s11277-022-09858-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09858-w

Keywords

Navigation