Skip to main content

Advertisement

Log in

Token Based k-Mutual Exclusion for Multi-UAV FANET

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Mutual exclusion is a well-studied topic in distributed systems. A distributed system with the duplicate copy of resources can increase throughput by allowing many processes to call their critical sections simultaneously through parallel execution. Because of the ongoing development of wireless technologies and dynamic networks such as mobile ad hoc networks, they are becoming increasingly complicated and varied in today's world. Flying ad hoc network (FANET), as a special variant of mobile ad hoc network, has nodes in which the cooperation and collaboration are highly dynamic and unpredictable in nature. In FANET, resources are mounted on an unmanned aerial vehicle (UAV) which can operate remotely with a flying capacity in the air without any human personnel. Various protocols as distributed mutual exclusion algorithms have been proposed as a solution to the mutual exclusion problem in a distributed system. To the best of our knowledge, such algorithms in FANETs haven't been exposed much and moreover through this paper, we present a novel token-based k mutual exclusion algorithm as mutual exclusion algorithm for flying network-multi UAV with its correctness proof and fault handling capabilities. To improve overall throughput as compared to single-UAV FANET, our approach works in a multi resource occupied flying environment and allows k duplicated resources mounted on available UAVs that facilitate processes at most k to invoke their critical sections simultaneously. This solution is also fault-tolerant to UAV failure in the system, whereas in single-UAV FANET, this considers a failure of the entire system. We have also presented simulation results for our algorithm with range of 5–20 resource-equipped UAVs architecture support that indicate more efficient results for performance throughput metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Tanenbaum, A. S., and Steen, M. V. (2013). Distributed Systems. Pearson Education

  2. Parihar, A. S., & Chakraborty, S. K. (2021). Token-based approach in distributed mutual exclusion algorithms: A review and direction to future research. The Journal of Supercomputing, 77, 14305–14355. https://doi.org/10.1007/s11227-021-03802-8

    Article  Google Scholar 

  3. Parihar, A. S., & Chakraborty, S. K. (2022). Handling of resource allocation in flying ad hoc network through dynamic graph modeling. Multimedia Tools and Applications, 81(13), 18641–18669. https://doi.org/10.1007/s11042-022-11950-z

    Article  Google Scholar 

  4. Parihar, A. S., & Chakraborty, S. K. (2022). A cross-sectional study on distributed mutual exclusion algorithms for ad hoc networks. In D. Gupta, K. Sambyo, M. Prasad, & S. Agarwal. (Eds.), Proceedings of international conference on advanced machine intelligence and signal processing. Pattern Recognition and Data Analysis with Applications. Singapore: Springer. https://doi.org/10.1007/978-981-19-1520-8.

  5. Parihar, A. S., & Chakraborty, S. K. (2022). A simple R-UAV permission-based distributed mutual exclusion in FANET. Wireless Networks, 28(2), 779–795. https://doi.org/10.1007/s11276-022-02889-y

    Article  Google Scholar 

  6. Jain, M., & Saxena, R. (2017). Overview of VANET: Requirements and its routing protocols. In: 2017 International Conference on Communication and Signal Processing (ICCSP). https://doi.org/10.1109/iccsp.2017.8286742

  7. Srivastava, A., & Prakash, J. (2021). Future FANET with application and enabling techniques: Anatomization and sustainability issues. Computer Science Review, 39(2021), 100359. https://doi.org/10.1016/j.cosrev.2020.100359

    Article  MathSciNet  Google Scholar 

  8. Chriki, A., Touati, H., Snoussi, H., & Kamoun, F. (2019). FANET: communication, mobility models and security issues. Computer Networks. https://doi.org/10.1016/j.comnet.2019.106877

    Article  Google Scholar 

  9. Curry, J. A., Maslanik, J., Holland, G., et al. (2004). Applications of aerosondes in the Arctic. Bulletin of the American Meteorological Society, 85(12), 1855–1861. https://doi.org/10.1175/BAMS-85-12-1855

    Article  Google Scholar 

  10. York, G., & Pack, D. J. (2012). Ground target detection using cooperative unmanned aerial systems. Journal of Intelligent and Robotic Systems, 65(1–4), 473–478. https://doi.org/10.1007/s10846-011-9590-4

    Article  Google Scholar 

  11. Zhu, S., Wang, D., & Boon, L. C. (2013). Ground target tracking using UAV with input constraints. Journal of Intelligent and Robotic Systems, 69(1–4), 417–429. https://doi.org/10.1007/s10846-012-9737-y

    Article  Google Scholar 

  12. Corrigan, C. E., Roberts, G. C., Ramana, M. V., et al. (2008). Capturing vertical profiles of aerosols and black carbon over the Indian Ocean using autonomous unmanned aerial vehicles. Atmospheric Chemistry and Physics, 8(3), 737–747. https://doi.org/10.5194/acp-8-737-2008

    Article  Google Scholar 

  13. Xiang, H., & Tian, L. (2011). Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosystems Engineering, 108(2), 174–190. https://doi.org/10.1016/j.biosystemseng.2010.11.010

    Article  MathSciNet  Google Scholar 

  14. Cevik, P., Kocaman, I., Akgul, A. S., et al. (2013). The small and silent force multiplier: A swarm UAVelectronic attack. Journal of Intelligent and Robotic Systems, 70(1–4), 595–608. https://doi.org/10.1007/s10846-012-9698-1

    Article  Google Scholar 

  15. Maza, I., Caballero, F., Capitn, J., et al. (2011). Experimental results in multi-UAV coordination for disaster management and civil security applications. Journal of Intelligent and Robotic Systems, 61(1–4), 563–585. https://doi.org/10.1007/s10846-010-9497-5

    Article  Google Scholar 

  16. Cho, A., Kim, J., Lee, S., & Kee, C. (2011). Wind estimation and airspeed calibration using a UAV with a single-antenna GPS receiver and pitot tube. IEEE Transactions on Aerospace and Electronic Systems, 47(1), 109–117. https://doi.org/10.1109/TAES.2011.5705663

    Article  Google Scholar 

  17. De Freitas, E. P., Heimfarth, T., Netto, I. F., Lino, C. E., Pereira, C. E., Ferreira, A. M., Wagner, F. R., & Larsson, T. (2010). UAV relay network to support WSN connectivity. In Proc. IEEE int. congress on ultra modern telecommunications and control systems and workshops (ICUMT), Moscow, Russia (pp. 309–314). https://doi.org/10.1109/ICUMT.2010.5676621

  18. Jiang, F., & Swindlehurst, A.L. (2010). Dynamic UAV relay positioning for the ground–to-air uplink. In Proceedings of the IEEE GLOBECOM workshops (GC workshop), IEEE (pp. 1766–1770). https://doi.org/10.1109/GLOCOMW.2010.5700245

  19. Sahingoz, O.K. (2013). Multi-level dynamic key management for scalable wireless sensor networks with UAV. In Ubiquitous information technologies and applications, Springer, Dordrecht (pp. 11–19). https://doi.org/10.1007/978-94-007-5857-5_2

  20. Sahingoz, O. K. (2013). Large scale wireless sensor networks with multi-level dynamic key management scheme. Journal of Systems Architecture, 59(9), 801–807. https://doi.org/10.1016/j.sysarc.2013.05.022

    Article  Google Scholar 

  21. Manathara, J. G., Sujit, P., & Beard, R. W. (2011). Multiple UAV coalitions for a search and prosecute mission. Journal of Intelligent & Robotic Systems, 62(1), 125–158. https://doi.org/10.1007/s10846-010-9439-2

    Article  MATH  Google Scholar 

  22. Asadpour, M., Giustiniano, D., Hummel, K. A., & Egli, S. (2013). UAV networks in rescue missions. In Proceedings of the 8th ACM international workshop on wireless network testbeds, experimental evaluation & characterization - WiNTECH ’13. https://doi.org/10.1145/2505469.2506491

  23. Barrado, C., Messeguer, R., & L´opez, J., Pastor, E., Santamaria, E. and P. Royo,. (2010). Wildfire monitoring using a mixed air-ground mobile network. IEEE Pervasive Computing, 9(4), 24–32. https://doi.org/10.1109/MPRV.2010.54

    Article  Google Scholar 

  24. Parihar, A.S., Prasad, D., Gautam, A.S. & Chakraborty, S.K. (2021). Proposed end-to-end automated e-voting through blockchain technology to increase voter’s turnout. In: Prateek, M., Singh, T.P., Choudhury, T., Pandey, H.M. & Gia Nhu, N. (eds) Proceedings of international conference on machine intelligence and data science applications. Algorithms for intelligent systems. Springer, Singapore. https://doi.org/10.1007/978-981-33-4087-9_5

  25. Semsch, E., Jakob, M., Pavlicek, D. & M. Pechoucek, (2009). Autonomous UAV surveillance in complex urban environments. In Proc. IEEE/WIC/ACM int. joint conf. on web intelligence and intelligent agent technologies (WI-IAT), Washington, DC, USA (vol. 2, pp. 82–85). https://doi.org/10.1109/WI-IAT.2009.132

  26. Kerr, S. (2014). UAE to develop fleet of drones to deliver public services. The Financial Times, World News, Volume 12.

  27. Walter, J. E., Welch, J. L., & Vaidya, N. H. (2001). A mutual exclusion algorithm for ad hoc mobile networks. Wireless Networks, 7, 585–600. https://doi.org/10.1023/A:1012363200403

    Article  MATH  Google Scholar 

  28. Benchaïba, M., Bouabdallah, A., Badache, N., & Ahmed-Nacer, M. (2004). Distributed mutual exclusion algorithms in mobile ad hoc networks. ACM SIGOPS Operating Systems Review, 38(1), 74–89. https://doi.org/10.1145/974104.974111

    Article  Google Scholar 

  29. Chen, Y., & Welch, J. L. (2005). Self-stabilizing dynamic mutual exclusion for mobile ad hoc networks. Journal of Parallel and Distributed Computing, 65(9), 1072–1089. https://doi.org/10.1016/j.jpdc.2005.03.009

    Article  MATH  Google Scholar 

  30. Mellier R., Myoupo JF., & Ravelomanana V. (2005). A non-token-based-distributed mutual exclusion algorithm for single-hop mobile ad hoc networks. In: Belding-Royer E.M., Al Agha K., Pujolle G. (eds) Mobile and wireless communication networks. MWCN 2004. IFIP international federation for information processing, Volume 162. Springer, Boston, MA. https://doi.org/10.1007/0-387-23150-1_25

  31. Wu W., Cao J., & Raynal M. (2007). A dual-token-based fault tolerant mutual exclusion algorithm for MANETs. In: Zhang H., Olariu S., Cao J., Johnson D.B. (eds) mobile ad-hoc and sensor networks. MSN 2007. Lecture notes in computer science, Volume 4864. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77024-4_52

  32. Thiare O., Naimi M., & Gueroui M. (2007). A group mutual exclusion algorithm for mobile ad hoc networks. In: Sobh T. (eds) Innovations and advanced techniques in computer and information sciences and engineering. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6268-1_67

  33. Wu, W., Cao, J., & Yang, J. (2008). A fault tolerant mutual exclusion algorithm for mobile ad hoc networks. Pervasive and Mobile Computing, 4(1), 139–160. https://doi.org/10.1016/j.pmcj.2007.08.001

    Article  Google Scholar 

  34. Thiare O. (2012). A token-based group mutual exclusion algorithm for MANETs. In: Kim T., Ko D., Vasilakos T., Stoica A., Abawajy J. (eds) Computer applications for communication, networking, and digital contents. FGCN. Communications in computer and information science, Volume 350. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35594-3_34

  35. Sharma B., Bhatia R.S., & Singh A.K. (2011). An O(1/n) protocol for supporting distributed mutual exclusion in vehicular ad hoc networks. In: Nagamalai D., Renault E., Dhanuskodi M. (eds) Advances in parallel distributed computing. PDCTA 2011. Communications in computer and information science, Volume 203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24037-9_14

  36. Tamhane, S. A., & Kumar, M. (2012). A token based distributed algorithm for supporting mutual exclusion in opportunistic networks. Pervasive and Mobile Computing, 8(5), 795–809. https://doi.org/10.1016/j.pmcj.2011.08.002

    Article  Google Scholar 

  37. Wu, W., Zhang, J., Luo, A., & Cao, J. (2015). Distributed mutual exclusion algorithms for intersection traffic control. IEEE Transactions on Parallel and Distributed Systems, 26(1), 65–74. https://doi.org/10.1109/tpds.2013.2297097

    Article  Google Scholar 

  38. Raymond, K. (1989). A tree-based algorithm for distributed mutual exclusion. ACM Transactions on Computer Systems, 7(1), 61–77. https://doi.org/10.1145/58564.59295

    Article  Google Scholar 

  39. Zheng, W., Song, L. X., & Mei’an, L. (2007). Ad hoc distributed mutual exclusion algorithm based on token-asking. Journal of Systems Engineering and Electronics, 18(2), 398–406. https://doi.org/10.1016/s1004-4132(07)60104-2

    Article  MATH  Google Scholar 

  40. Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system. Communications of the ACM, 21(7), 558–565. https://doi.org/10.1145/359545.359563

    Article  MATH  Google Scholar 

  41. Sharma, B., Bhatia, R. S., & Singh, A. (2014). A token based protocol for mutual exclusion in mobile ad hoc networks. Journal of Information Processing Systems, 10, 36–54. https://doi.org/10.3745/JIPS.2014.10.1.036

    Article  Google Scholar 

  42. Khanna, A., Rodrigues, J. J. P. C., Gupta, N., Swaroop, A., Gupta, D., Saleem, K., & De Albuquerque, V. H. C. (2019). A mutual exclusion algorithm for flying ad hoc networks. Computers & Electrical Engineering, 76, 82–93. https://doi.org/10.1016/j.compeleceng.2019.03.005

    Article  Google Scholar 

  43. Khanna, A., Rodrigues, J. J. P. C., Gupta, N., Swaroop, A., & Gupta, D. (2020). Local mutual exclusion algorithm using fuzzy logic for flying ad hoc networks. Computer Communications, 156, 101–111. https://doi.org/10.1016/j.comcom.2020.03.036

    Article  Google Scholar 

  44. Shehu, H. A., Sharif, M. H., & Ramadan, R. A. (2020). Distributed mutual exclusion algorithms for intersection traffic problems. IEEE Access, 8, 138277–138296. https://doi.org/10.1109/ACCESS.2020.3012573

    Article  Google Scholar 

  45. Attiya, H., Kogan, A., & Welch, J. L. (2008). Efficient and robust local mutual exclusion in mobile ad hoc networks. In The 28th International Conference on Distributed Computing Systems, Beijing (pp. 321–328). https://doi.org/10.1109/ICDCS.2008.82

  46. Keranen, A., Ott, J., & Karkkainen, T. (2009). The ONE simulator for DTN protocol evaluation. In Proc. 2nd international conference on simulation tools and techniques (pp. 55:1–55:10). https://doi.org/10.4108/ICST.SIMUTOOLS2009.5674

Download references

Funding

This study was not funded by any organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Singh Parihar.

Ethics declarations

Conflict of interest

The authors have no a conflict of interest in relation to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parihar, A.S., Chakraborty, S.K. Token Based k-Mutual Exclusion for Multi-UAV FANET. Wireless Pers Commun 126, 3693–3714 (2022). https://doi.org/10.1007/s11277-022-09886-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09886-6

Keywords

Navigation