Skip to main content
Log in

A Compact Phased Array Antenna for 5G MIMO Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this article, a new methodology for applying the phased array antenna method to MIMO technology with the ability to provide improved frequency diversity and isolation properties is discussed. The radiator serves to attenuate sub-3 GHz bands by providing 1800 phase difference in the input signal at both the ports simultaneously. A network of asymmetric dual split-split ring resonators is loaded beneath the antenna model to give consistent isolation characteristics between 3.5 and 5.8 GHz. At 3.5 GHz, the gain of 4.23 dBi while 5.6 dBi at 5.8 GHz is attained with the volume of (23 × 23 × 1.6) mm3. The electromagnetic coupling effect between the ports was measured to be − 15 dB without any decoupling structures throughout the bandwidth 3.2 and 6.2 GHz. The MIMO benchmarks such as Envelope Correlation Coefficient of 0.003, Diversity Gain of 9.8 dB, and Total Active Reflection Coefficient less than − 15 dB were obtained from the proposed radiator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Material

All the data that are portrayed here are original information retrieved through the appropriate simulator and the experimental verification was carried out using Agilent Vector Network Analyser.

Code Availability

Not Applicable.

References

  1. Dkiouak, A., Zakriti, A., El Ouahabi, M., & Mchbal, A. (2020). Design of two element Wi-MAX/WLAN MIMO antenna with improved isolation using a short stub-loaded resonator (SSLR). Journal of Electromagnetic Waves and Applications, 34(9), 1268–1282. https://doi.org/10.1080/09205071.2020.1756927

    Article  Google Scholar 

  2. Banerjee, J., Karmakar, A., Ghatak, R., & Poddar, D. R. (2017). Compact CPW-fed UWB MIMO antenna with a novel modified Minkowski fractal defected ground structure (DGS) for high isolation and triple band-notch characteristic. Journal of electromagnetic Waves and Applications, 31(15), 1550–1565. https://doi.org/10.1080/09205071.2017.1354727

    Article  Google Scholar 

  3. Madhav, B. T. P., Usha Devi, Y., & Anilkumar, T. (2019). Defected ground structured compact MIMO antenna with low mutual coupling for automotive communications. Microwave and Optical Technology Letters, 61(3), 794–800. https://doi.org/10.1002/mop.31626

    Article  Google Scholar 

  4. Acharjee, J., Mandal, K., & Mandal, S. K. (2018). Reduction of mutual coupling and cross-polarization of a MIMO/diversity antenna using a string of H-shaped DGS. AEU - International Journal of Electronics and Communications, 97, 110–119. https://doi.org/10.1016/j.aeue.2018.09.037

    Article  Google Scholar 

  5. Yang, X. M., Liu, X. G., Zhou, X. Y., & Cui, T. J. (2012). Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials. IEEE Antennas and Wireless Propagation Letters, 11(389–391), 2012. https://doi.org/10.1109/LAWP.2012.2193111

    Article  Google Scholar 

  6. El Ouahabi, M., Zakriti, A., Essaaidi, M., Dkiouak, A., & Hanae, E. (2019). A miniaturized dual-band MIMO antenna with low mutual coupling for wireless applications. Progress Electromagnetics Research C, 93, 93–101. https://doi.org/10.2528/PIERC19032601

    Article  Google Scholar 

  7. Torabi, Y., Bahri, A., & Sharifi, A.-R. (2016). A novel metamaterial MIMO antenna with improved isolation and compact size based on LSRR resonator. IETE Journal of Research, 62(1), 106–112. https://doi.org/10.1080/03772063.2015.1085335

    Article  Google Scholar 

  8. Iqbal, A., Saraereh, O. A., Bouazizi, A., & Basir, A. (2018). Metamaterial-based highly Isolated MIMO antenna for portable wireless applications. Electronics, 7(10), 267. https://doi.org/10.3390/electronics7100267

    Article  Google Scholar 

  9. Biswas, A. K., & Chakraborty, U. (2019). Investigation on decoupling of wide band wearable multiple-input multiple-output antenna elements using microstrip neutralization line. International Journal of RF and Microwave Computer-Aided Engineering, 29(7), e21723. https://doi.org/10.1002/mmce.21723

    Article  Google Scholar 

  10. Kayabasi, A., Toktas, A., Yigit, E., & Sabanci, K. (2018). Triangular quad-port multi-polarized UWB MIMO antenna with enhanced isolation using neutralization ring. AEU: International Journal of Electronics and Communications, 85, 47–53. https://doi.org/10.1016/j.aeue.2017.12.027

    Article  Google Scholar 

  11. Zhang, S., & Pedersen, G. F. (2016). Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line. IEEE Antennas and Wireless Propagation Letters, 15, 166–169. https://doi.org/10.1109/LAWP.2015.2435992

    Article  Google Scholar 

  12. Abdullah, M., Ban, Y. -L., Kang, K., Li, M.-Y., & Amin, M. (2017). Compact four-port MIMO antenna system at 3.5 GHz, In 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, pp. 656–660. https://doi.org/10.1109/IAEAC.2017.8054098

  13. Nirmal, P., Nandgaonka, A. B., & Nalbalwa, S. L. (2016) A MIMO antenna: Study on reducing mutual coupling and improving isolation, In 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), pp. 1736–1740. https://doi.org/10.1109/RTEICT.2016.7808131.

  14. Wu, W., Yuan, B., & Wu, A. (2018). A quad-element UWB-MIMO antenna with band-notch and reduced mutual coupling based on EBG Structures. International Journal of Antennas and Propagation, 2018, 1–10. https://doi.org/10.1155/2018/8490740

    Article  Google Scholar 

  15. Kumar, N., & Kiran Kommuri, U. (2018). MIMO antenna mutual coupling reduction For WLAN usingspiro meander line UC-EBG. Progress Electromagnetics Research C, 80, 65–77. https://doi.org/10.2528/PIERC17101601

    Article  Google Scholar 

  16. Biswas, A. K., & Chakraborty, U. (2019). Reduced mutual coupling of compact MIMO antenna designed for WLAN and WiMAX applications. International Journal of RF and Microwave Computer-Aided Engineering, 29(3), e21629. https://doi.org/10.1002/mmce.21629

    Article  Google Scholar 

  17. Cheng, C., Zhang, F., Wan, Y., & Zhang, F. (2014). Miniaturized high-isolation dual-frequency orthogonally polarized patch antenna using compact electromagnetic bandgap filters. International Journal of Antennas and Propagation, 2014, 1–6. https://doi.org/10.1155/2014/230316

    Article  Google Scholar 

  18. Chen, S.-C., Wang, Y.-S., & Chung, S.-J. (2008). A decoupling technique for increasing the port isolation between two strongly coupled antennas. IEEE Transactions on Antennas and Propagation, 56(12), 3650–3658. https://doi.org/10.1109/TAP.2008.2005469

    Article  Google Scholar 

  19. Zhao, L., Yeung, L. K., & Wu, K.-L. (2014). A coupled resonator decoupling network for two-element compact antenna arrays in mobile terminals. IEEE Transactions on Antennas and Propagation, 62(5), 2767–2776. https://doi.org/10.1109/TAP.2014.2308547

    Article  Google Scholar 

  20. Ghosh, J., Ghosal, S., Mitra, D., & Bhadra Chaudhuri, S. R. (2016). Mutual coupling reduction between closely placed microstrip patch antenna using meander line resonator. Progress In Electromagnetics Research Letters, 59, 115–122. https://doi.org/10.2528/PIERL16012202

    Article  Google Scholar 

  21. Marrocco, G. (2003). Gain-optimized self-resonant meander line antennas for RFID applications. IEEE Antennas and Wireless Propagation Letters, 2, 302–305. https://doi.org/10.1109/LAWP.2003.822198

    Article  Google Scholar 

  22. Kamal, S., & Chaudhari, A. A. (2017). Printed meander Line MIMO antenna integrated with air gap, DGS And RIS: A low mutual coupling design For LTE applications. Progress In Electromagnetics Research C, 71, 149–159. https://doi.org/10.2528/PIERC16112008

    Article  Google Scholar 

  23. Simons, R. N. (2001). Coplanar Waveguide Circuits, Components, and Systems. Wiley. https://doi.org/10.1002/0471224758

    Book  Google Scholar 

  24. Ibrahim, A. A., Abdalla, M. A., & Hu, Z. (2018). Compact ACS-fed CRLH MIMO antenna for wireless applications. IET Microwaves, Antennas & Propagation, 12(6), 1021–1025. https://doi.org/10.1049/iet-map.2017.0975

    Article  Google Scholar 

  25. Surendar, U., Senthilkumar, S., & William, J. (2021). Double negative material-based miniaturized passive planar S-Shaped radiator. Springer. https://doi.org/10.1007/978-981-15-9019-1_42

    Book  Google Scholar 

  26. Abo-Hammour, Z., Alsmadi, O., Momani, S., & Abu Arqub, O. (2013). A genetic algorithm approach for prediction of linear dynamical systems. Mathematical Problems in Engineering, 2013, 1–12. https://doi.org/10.1155/2013/831657

    Article  Google Scholar 

  27. Abu Arqub, O., Abo-Hammour, Z., Momani, S., & Shawagfeh, N. (2012). Solving singular two-point boundary value problems using continuous genetic algorithm. Abstract and Applied Analysis, 2012, 1–25. https://doi.org/10.1155/2012/205391

    Article  MATH  Google Scholar 

  28. Arqub, O. A., & Abo-Hammour, Z. (2014). Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm. Information Sciences, 279, 396–415. https://doi.org/10.1016/j.ins.2014.03.128

    Article  MATH  Google Scholar 

  29. Rajkumar, R., & Usha Kiran, K. (2016). A compact ACS-fed mirrored L-shaped monopole antenna with srr loaded for multiband operation. Progress In Electromagnetics Research C, 64, 159–167. https://doi.org/10.2528/PIERC16031501

    Article  Google Scholar 

  30. Ameen, M., Mishra, A., & Chaudhary, R. K. (2020). Asymmetric CPW-fed electrically small metamaterial- inspired wideband antenna for 3.3/3.5/5.5 GHz WiMAX and 5.2/5.8 GHz WLAN applications. AEU-International Journal of Electronics and Communications, 119, 153177. https://doi.org/10.1016/j.aeue.2020.153177

    Article  Google Scholar 

  31. Kumar, M., & Nath, V. (2020). Design and development of triple-band compact ACS-fed MIMO antenna for 2.4/3.5/5 GHz WLAN/WiMAX applications. Analog Integrated Circuits and Signal Processing, 103(3), 461–470. https://doi.org/10.1007/s10470-020-01626-9

    Article  Google Scholar 

  32. Calla, O. P. N., Singh, A., Kumar Singh, A., Kumar, S., & Kumar, T. (2008). Empirical relation for designing the meander line antenna,” In 2008 International Conference on Recent Advances in Microwave Theory and Applications, pp. 695–697. https://doi.org/10.1109/AMTA.2008.4762995.

  33. Castro, P. J., Barroso, J. J., LeiteNeto, J. P., Tomaz, A., & Hasar, U. C. (2016). Experimental study of transmission and reflection characteristics of a gradient array of metamaterial split-ring resonators. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 15(4), 380–389. https://doi.org/10.1590/2179-10742016v15i4658

    Article  Google Scholar 

  34. Ramanujam, P., Venkatesan, R. P. G., & Arumugam, C. (2020). Electromagnetic interference suppression in stacked patch antenna using complementary split ring resonator. Microwave and Optical Technology Letters, 62(1), 193–199. https://doi.org/10.1002/mop.31985

    Article  Google Scholar 

  35. Naqvi, A. H., & Lim, S. (2021) Review of recent phased arrays for millimeter-wave wireless communication. Retrieved 11 May, 2021 from https://www.mdpi.com/1424-8220/18/10/3194/htm

  36. Dave, T. P., & Rathod, J. M. (2020). A compact frequency diversity antenna with DGS and SRR mode switching for LTE and WLAN/WiMAX wireless systems. Wireless Personal Communications, 112(1), 411–420. https://doi.org/10.1007/s11277-020-07035-5

    Article  Google Scholar 

  37. Hasan, M. N., Chu, S., & Bashir, S. (2019). A DGS monopole antenna loaded with U-shape stub for UWB MIMO applications. Microwave and Optical Technology Letters, 61(9), 2141–2149. https://doi.org/10.1002/mop.31877

    Article  Google Scholar 

  38. Sharawi, M. S. (2013). Printed multi-band MIMO antenna systems and their performance metrics [wireless corner]. IEEE Antennas and Propagation Magazine, 55(5), 218–232. https://doi.org/10.1109/MAP.2013.6735522

    Article  Google Scholar 

  39. Azari-Nasab, T., Ghobadi, Ch., Azarm, B., & Majidzadeh, M. (2020). Triple-band operation achievement via multi-input multi-output antenna for wireless communication system applications. International Journal of Microwave and Wireless Technologies, 12(3), 259–266. https://doi.org/10.1017/S1759078719001302

    Article  Google Scholar 

  40. Surendar, U., Senthilkumar, S., & William, J. (2021). Design of low-cost miniaturized metamaterial-based circular split-ring monopole radiating system for LTE applications. Journal of Circuits, Systems and Computers. https://doi.org/10.1142/S0218126621502339

    Article  Google Scholar 

  41. Marqués, R., Martín, F., & Sorolla, M. (2013) Metamaterials with negative parameters: Theory, design, and microwave applications. https://doi.org/10.1016/s1369-7021(08)70022-1.

Download references

Acknowledgements

I hereby declare that the work presented here has not been submitted anywhere.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors whose names appear on the submission have made substantial contributions to the conception and design of the work.

Corresponding author

Correspondence to U. Surendar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

The research results are obtained through fabrication and measurements and no results are falsified.

Consent to Publish

The authors have agreed to the content and do not have any conflicts.

Consent to Participate

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senthilkumar, S., Surendar, U., Christina, X.S. et al. A Compact Phased Array Antenna for 5G MIMO Applications. Wireless Pers Commun 128, 2155–2174 (2023). https://doi.org/10.1007/s11277-022-10037-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-10037-0

Keywords

Navigation