Skip to main content
Log in

The Effect of Miniaturized Circular Antennas on the SAR Reduction for Wireless Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This work, presents the design and realization of two new miniaturized circular antennas as well as their effects on the human body. The first step consists in simulation each bi-band antenna at 2.5 GHz and at 5.2 GHz for wireless applications using the simulators HFSS and CST Microwave studio. The second step is manifested by the type of permeability substrates, the modifications of the radiating element and the ground plane as well as the modification of the feeding technique. All these miniaturization methods were used to limit the peak of specific absorption rate (SAR) in the human body. The SAR is calculated on a 1 and 10 g tissue mass respectively. The performed tests show that the SAR rate, which affects the human body tissues and obtained by the antenna with a full ground plane, is lower than that provided by the antenna with a truncated ground plane. Furthermore, the SAR rate observed in the different frequency bands for the antenna 2 complies with the standards proposed by the international commission on non-ionizing radiation protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

I confirm the transparencies of data and material.

Code availability

Not applicable.

References

  1. Fereidoony, F., Chamaani, S., & Mirtaheri, S. A. (2012). Systematic design of UWB monopole antennas with stable omnidirectional radiation patter. IEEE Antennas and Wireless Propagation Letters, 11, 752–755.

    Article  Google Scholar 

  2. Kakkar, A., & Sah, S. (2018). A Multiband circular patch microstrip antenna for k and ka applications. Advances in Intelligent Systems and Computing, 624, 1437–1444.

    Article  Google Scholar 

  3. Rahim, A.U., Ullah, S., Ilyas, M., Shoaib, M., Khan, S., & Khan, I. (2015). Design and analysis of compact and multi-band circular antennas. In International conference on open source systems and technologies (pp. 1–4).

  4. Wei, K., Li, J. Y., Wang, L., Xing, Z. J., & Xu, R. (2015). Study of multi-band circularly polarized microstrip antenna with compact size. Progress in Electromagnetics Research, 58, 11–19.

    Article  Google Scholar 

  5. Chakraborty, U., Kundu, A., & Chowdhury, S. K. (2014). Compact dual-band microstrip antenna for IEEE 802.11 a WLAN application. IEEE Antennas Wireless Propagation, 13, 407–410.

    Article  Google Scholar 

  6. Wang, H., & Zheng, M. (2011). An internal triple-band WLAN antenna. IEEE Antennas Wireless Propagation, 10, 569–572.

    Article  Google Scholar 

  7. Lai, H. W., Mak, K. M., & Chan, K. F. (2014). Novel aperture-coupled microstrip-line feed for circularly polarized patch antenna. Progress in Electromagnetics Research, 144, 1–9.

    Article  Google Scholar 

  8. Mondal, K., & Sarkar, P. P. (2017). Single feed aperture coupled circular broadband microstrip patch antenna. In Devices for integrated circuit (DevIC) (pp. 1–4).

  9. Mursyidul, I. S., Rahim, S. K. A., Soh, P. J., Leow, C. Y., & Vandenbosch, G. A. E. (2015). A simple electromagnetically fed circularly-polarized circular microstrip antenna. ACES Journal, 30, 1180–1187.

    Google Scholar 

  10. Adam, I., Yasin, M. N., Soh, P. J., Kamardin, K., Jamlos, M. F., Lago, H., & Razall, M. S. (2017). A simple wideband electromagnetically fed circular polarized antenna for energy harvesting. Microwave and Optical Technology Letters, 59, 390–397.

    Article  Google Scholar 

  11. Deshmukh, A. A., Doshi, A. V., & Ray, K. P. (2020). Electromagnetically coupled circularly polarized modified triangular microstrip antenna. IETE Journal of Research, 68(5), 3212–3221.

    Article  Google Scholar 

  12. Rajmohan, I. J., & Hussein, M. (2017). A multiband circular-annular ring patch antenna for wireless applications. In International conference on electrical and computing technologies and applications (ICECTA) (pp. 1–4).

  13. Singh, P. (2014). Rectangular notch loaded dual band annular ring patch antenna. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 13, 85–96.

    Article  Google Scholar 

  14. Shaw, M., Deb, B., & Mondal, N. (2018). Circular microstrip patch antenna with u-slots for multi band application. In International conference on electronics, materials engineering and nano-technology (IEMENTech) (pp. 1–4).

  15. Cho, Y. J., Park, S. O., & Shin, Y. S. (2006). Internal PIFA for 2.4/5 GHz WLAN applications. Electronics, 42, 8–13.

    Google Scholar 

  16. Guan, C. E., & Fujimoto, T. (2020). Design of a wideband l-shape fed microstrip patch antenna backed by conductor plane for medical body area network. Electronics, 9(1), 21.

    Article  Google Scholar 

  17. Hossain, M. I., Faruque, M. R. I., & Islam, M. T. (2015). Analysis on the effect of the distances and inclination angles between human head and mobile phone on SAR. Progress in Biophysics and Molecular Biology, 119(2), 103–110.

    Article  Google Scholar 

  18. Hamza, B. H., Ghnimi, S., Latrach, L., Benech, P., & Gharsallah, A. (2020). New design of multi-band PIFA antenna with reduced SAR for mobile and wireless applications. An International Journal Wireless Personal Communications, 115(2), 1211–1226.

    Article  Google Scholar 

  19. Hamadi, B. H., Ghnimi, S., Latrach, L., & Gharsallah, A. (2019). Analysis and design of a new PIFA antenna for the wireless communication applications. In The 19th IEEE mediterranean microwave symposium (pp. 1–6).

  20. Faruque, M. R. I., Islam, M. T., & Misran, N. (2010). SAR analysis in human head tissues for different types of antennas. World Applied Sciences Journal, 11, 1089–1096.

    Google Scholar 

  21. Hamadi, B. H., Ghnimi, S., Latrach, L., Benech, P., & Gharsallah, A. (2022). Analysis of the electromagnetic absorption in a new design of PIFA antenna using metamaterials. An International Journal Wireless Personal Communications, 124, 1337–1354.

    Article  Google Scholar 

  22. Hamadi, B. H., Ghnimi, S., Latrach, L., & Gharsallah, A. (2020). Design of the millimeter-wave textile antenna loaded with AMC structures for 5G applications. In 32nd International conference on microelectronics (ICM) (pp. 1–4).

  23. Balanis, A. (2016). Antenna theory analysis and design (4th ed.). New York: Wiley.

    Google Scholar 

  24. Pozar, D. M., & Kaufman, B. (1987). Increasing the baud with of a microstrip antenna by proximity coupling. Electronics, 23, 368–369.

    Google Scholar 

  25. Sievenpiper, D., Dawson, D., & Jacob, M. (2012). Experimental validation of performance limits and design guidelines for small antennas. IEEE Transactions on Antennas and Propagation, 60, 8–19.

    Article  MathSciNet  MATH  Google Scholar 

  26. Echon, R. M., & Jacob, A. F. (2020). Finite ground plane effects on the radiation pattern of small microstrip arrays. IEEE Transactions on Antennas and Propagation, 147, 139–143.

    Google Scholar 

  27. Bhattacharyya, A. (1990). Effect of finite ground plane on the radiation characteristics of a circular patch antenna. IEEE Transactions on Antennas and Propagation, 38, 152–159.

    Article  Google Scholar 

  28. Sarkar, S., Majumdar, A. D., Mondal, S., Biswas, D., Sarkar, D., & Sarkar, P. P. (2011). Miniaturization of rectangular microstrip patch antenna using optimized single-slotted ground plane. Microwave and Optical Technology Letters, 53, 111–115.

    Article  Google Scholar 

  29. Prabhakar, H. V., Kummuni, U. K., Yadahalli, R. M., & Munnappa, V. (2017). Effect of various meandering slots in rectangular microstrip antenna ground plane for compact broadband operation. Electronics Letters, 43, 16–17.

    Google Scholar 

  30. Herscovici, N., Osorio, M. F., & Peixeiro, C. (2002). Miniaturization of rectangular microstrip patchs using genetic algorithms. IEEE Antennas Wireless Propagation Letters, 1, 94–97.

    Article  Google Scholar 

  31. Mokal, V., Gagare, S. R., & Labade, R. P. (2017). Analysis of microstrip patch antenna using coaxial feed and micro strip line feed for wireless application. IOSR Journal of Electronics and Communication Engineering, 12, 36–41.

    Article  Google Scholar 

  32. Chin, K. W., Tong, K. F., & Luk, K. M. (1999). Wide band circular patch antenna operated at TMO1 mode. Electronics, 35, 2070–2071.

    Google Scholar 

  33. Shuo, L., Wen, W., & Gang, F. (2016). Wideband monopole-like radiation pattern circular patch antenna with high gain and low cross-polarization. IEEE Transactions on Antennas and Propagation, 64, 2042–2045.

    Article  Google Scholar 

  34. Trajkovikj, J., & Skrivervik, A. (2015). Diminishing SAR for wearable UHF antennas. IEEE Antennas and Wireless Propagation Letters, 14, 1530–1533.

    Article  Google Scholar 

  35. Augustine, R., Alves, T., Zhadobov, M., Poussot, B., Sarrebourse, T., Sauleau, R., Thomas, M., & Laheurte, J. M. (2010). SAR reduction of wearable antennas using polymetric ferrite sheets. In Proceedings of the fourth european conference on antennas and propagation (pp. 1–3).

  36. Rosaline, S. I., & Raghavan, S. (2015). A compact dual band antenna with an ENG SRR cover for Sar reduction. Microwave Optical Technology Letterers, 57, 741–747.

    Article  Google Scholar 

  37. Gea, G. P., Hu, B., Wang, S. F., & Yang, C. (2018). Wearable circular ring slot antenna with EBG structure for wireless body area network. IEEE Antennas and Wireless Propagation Letters, 17, 434–437.

    Article  Google Scholar 

  38. Bashyam, S., Ramachandran, B., & Sandeep, K. P. (2021). Reduced absorption rate compact flexible monopole antenna system for smart wearable wireless communication. An International Journal Engineering Science and Technology, 24, 682–693.

    Article  Google Scholar 

Download references

Funding

The research was not funded or supported by any party.

Author information

Authors and Affiliations

Authors

Contributions

The ethics approval, the consent to participate and the consent for publication between authors (Yes, compatibility is present.

Corresponding author

Correspondence to Said Ghnimi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamadi, H.B., Ghnimi, S., Latrach, L. et al. The Effect of Miniaturized Circular Antennas on the SAR Reduction for Wireless Applications. Wireless Pers Commun 130, 165–189 (2023). https://doi.org/10.1007/s11277-023-10280-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10280-z

Keywords

Navigation